
PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

A look inside an Application
Processor: CVA6

Gianmarco Ottavi <Gianmarco.ottavi2@unibo.it>

|

CVA6 is open-source
 You can find all the RTL of the Core at:
 https://github.com/openhwgroup/cva6

 CVA6 is just one of the core born from the PULP Project
 https://pulp-platform.org/

 https://github.com/pulp-platform

 From RTL to Silicon

https://github.com/openhwgroup/cva6
https://pulp-platform.org/
https://github.com/pulp-platform

|

A look Into CVA6

 RISC-V ISA RV64IMAC(F)

 M,S,U Privilege level

Spec.

 Can run linux-like OS (Application

class processor).

 In-Order Single Issue

with 6 stages of Pipeline

F. Zaruba, L. Benini -- DOI: 10.1109/TVLSI.2019.2926114

|

A look Into CVA6: Frontend
PC Generation:

 Sequential Fetch

 Miss Prediction Recovery

 Exception

 Debug

 CSR

Instruction Fetch:

 Pre-Decoding for Branch Prediction

 Instruction Cache
 Virtually Indexed and Physically Tagged

 Pipelined to mitigate long propagation delays of

memory macros

Frontend Decoupled with backend

via Instruction queue

F. Zaruba, L. Benini -- DOI: 10.1109/TVLSI.2019.2926114

|

A look Into CVA6: Backend
Decode Stage:

 Compressed decoder

 Decoder

Issue Stage:

 Renaming
 Lightweight 1-bit renaming scheme

 Operand Read
 Instruction Are issued if Operands are ready

 Scoreboarding
 Mixed Scoreboard with Reorder Buffer

 Issued instruction are tracked for data Hazards

 Allow Out-Of-Order completion

F. Zaruba, L. Benini -- DOI: 10.1109/TVLSI.2019.2926114

|

A look Into CVA6: Backend
Ex Stage:

 ALU

 FPU

 Multiplier/Integer Div
 2 Stage/Iterative

 LSU with 3 Master Ports
 Load

 Store

 PTW

 Data Cache 2 Stages Pipeline

 Branch Unit

F. Zaruba, L. Benini -- DOI: 10.1109/TVLSI.2019.2926114

|

A look Into CVA6: Backend
Commit Stage

 Commit Completed instruction

In-Order

 Register File

 Main memory

External Interface to main

memory AXI4 Compliant

F. Zaruba, L. Benini -- DOI: 10.1109/TVLSI.2019.2926114

Frontend Can be divided in 3 main

blocks:

Deep Dive: Frontend

Frontend Can be divided in 3 main

blocks:

• Current Instruction

• Realign Sampled Instruction

from Instruction cache

• Store the current instructions

into instr. queue;

Deep Dive: Frontend

Frontend Can be divided in 3 main blocks:

• Current Instruction;

• Realign Sampled Instruction

from Instr. cache;

• Store the instruction into instr.

queue;

• Next Program Counter Logic:

• Compute next PC depending

on:

o Booting;

o Exceptions;

o Debugging;

o Branch;

o Recovery from bad

Prediction;

o Sequential Fetching.

Deep Dive: Frontend

Frontend Can be divided in 3 main blocks:

• Current Instruction;

• Realign Sampled Instruction

from Instr. cache;

• Store the instruction into instr.

queue;

• Next Program Counter Logic:

• Compute next PC depending

on:

o External Inputs;

o Branches on current instr;

o Recovery from bad

Prediction;

o Exception;

o Debugging;

o Booting;

• Cache interface:

• Request Side;

• Response Side;

Deep Dive: Frontend

Why do we need an istruction realigner?

CVA6 supports Compressed Instructions and data interface from ICACHE is 32 bits.
• Compressed Instructions ~70% of total instruction.
• On 32bit fetch width equals to ~1.5 instr per fetch.

32 bit instruction

16 bit 16 bit

16 bit/MSB 32 bit instrLSB 32 bit instr

MSB 32 bit instr16 bit/LSB 32 bit instr

31 16 15 0
Case 1)

Case 2)

Case 3)

Case 4)

Instr[0]

Instr[1]

Addr[0]

Addr[1]

Valid[0]

Valid[1]

Instr
Realigner

Data

Addr

Valid

Unaligned

32bit

64bit

• Data will contain on of the following cases:

• Addr corresponds to the fetch address of the presented data.

• Valid tells if the data that is presented at the interface is
usable.

Non Compressed instruction have the first
2 bits = 1 Check bits [1:0] and [17:16]

No Alignment
Necessary

32 bit instruction

16 bit 16 bit

16 bitLSB 32 bit instr

MSB 32 bit instr16 bit/LSB 32 bit instr

31 0
Case 1)

Case 2)

Case 3)

Case 4)

Instr[0]

Instr[1]

Addr[0]

Addr[1]

Valid[0]

Valid[1]

Instr
Realigner

Data

Addr

Valid

Unaligned

Case 1)

32 bit instruction

16 bit 16 bit

16 bitLSB 32 bit instr

MSB 32 bit instr16 bit/LSB 32 bit instr

31 0
Case 1)

Case 2)

Case 3)

Case 4)

Instr[0]

Instr[1]

Addr[0]

Addr[1]

Valid[0]

Valid[1]

Instr
Realigner

Data

Addr

Valid

Unaligned

Case 1)

0x0012 d293 Data[1:0] = 11

Non Compressed Instructions

32 bit instruction

16 bit 16 bit

16 bitLSB 32 bit instr

MSB 32 bit instr16 bit/LSB 32 bit instr

31 0
Case 1)

Case 2)

Case 3)

Case 4)

Instr[0]

Instr[1]

Addr[0]

Addr[1]

Valid[0]

Valid[1]

Instr
Realigner

Data

Addr

Valid

Unaligned

Case 1)

0x0012 d293 Data[1:0] = Data[17:16] = 11

Non Compressed Instructions

All data is put into Instr[0]

32 bit instruction

16 bit 16 bit

16 bitLSB 32 bit instr

MSB 32 bit instr16 bit/LSB 32 bit instr

31 0
Case 1)

Case 2)

Case 3)

Case 4)

Instr[0]

Instr[1]

Addr[0]

Addr[1]

Valid[0]

Valid[1]

Instr
Realigner

Data

Addr

Valid

Unaligned

Case 1)

0x0012 d293 Data[1:0] = Data[17:16] = 11

Non Compressed Instructions

All data is put into Instr[0]

We have both Addr[0] and [1] with valid addresses

32 bit instruction

16 bit 16 bit

16 bitLSB 32 bit instr

MSB 32 bit instr16 bit/LSB 32 bit instr

31 0
Case 1)

Case 2)

Case 3)

Case 4)

Instr[0]

Instr[1]

Addr[0]

Addr[1]

Valid[0]

Valid[1]

Instr
Realigner

Data

Addr

Valid

Unaligned

Case 1)

0x0012 d293 Data[1:0] = Data[17:16] = 11

Non Compressed Instructions

All data is put into Instr[0]

We have both Addr[0] and [1] with valid addresses

But only valid[0] = 1  Subsequent block in the
Frontend will consider only instr[0]

Case 3)

0x90E3 33FD  0xD = 1101 (Compressed)
0x3 = 0011 (Not Compressed)

Store the Upper 16 bits into an inside register
and serve the Non-Compressed instruction the
next Cycle

Case 3)

0xE032 FE03  Upper 16bits Compressed! We can serve a compressed and the 32bit
unaligned instruction in the same Cycle

• Valid Instructions can be Pushed into the instruction Queue

• Form of circular Buffer: pointer for write and read.

• If the Queue becomes full  ready = 0 stops request to cache

Pushing into Instruction Queue

Instr
Addr
Valid

Fetch_entry_o
Fetch_entry_valid_o

Fetch_entry_ack_i
Ready

Address[63:0]
Data[31:0]
Branch Prediction

Exception

Control Flow Type (Branch,Jump,JumpR,Return)

Predicted_address[63:0]

Cause[63:0]
Tval[63:0]
Valid

#0

#1

#2

#3

#4

Read
Pointer

Write
Pointer

Valid Instructions Advance Write Pointer

Entry Acknowledge Advance Read Pointer

Frontend is divided in 3 main blocks:
• Current Instruction;

• Realign Sampled Instruction from
Instr. cache;

• Store the instruction into instr.
queue;

• Next Program Counter Logic:
• Compute next PC depending on:

o Booting;
o Exceptions;
o Debugging;
o Branch;
o Recovery from bad Prediction;
o Sequential Fetching.

Next Program Counter Logic

Branch Prediction

Instr.
Scan

BHT

BTB

RAS

Branch
Prediction

Branch
type

Imm.

Instr

Addr

Taken

Predicted
Address

CVA6 implements Dynamic Branch Prediction:

• Branch History Table (BHT): Used for
predicting Branches (BEQ, BNE, etc).

• Branch Target Buffer (BTB): Used for
predicting JALR.

• Return Address Stack (RAS): Used for
predicting returns from function calls.

Instruction Scan Pre-decodes the instructions to control branch prediction:

• Extract Type of branch  Select Predictor.

• Extract Immediate  Calculation of predicted Address.

BHT: Bimodal

History Table

128 Entries

Addr

Lower log2(Nentries)

2 bit saturation Counter

BTB

Taken

Not
Taken

Addr

Lower log2(Nentries) 32 Entries

Target Buffer

Each Buffer contains the last Address Known of the predicted JALR
(that isn’t a return).

RAS
On Function Calls: PUSH  Save Return Address on the stack

On Function Return: POP  Use the popped Address as Predicted
Address

Addr +4

PUSH POP

PREDICTED ADDR

Next Program Counter

Boot_addr_i

Npc_q

Predicted Address

Fetch_addr + 4

Target Addr (MP)

EPC_i

Trap_vector_base

pc_commit_i

Debug_addr

Npc_d Npc_q

SystemVerilog Code Snippet

• NPC_Q  Next Program Counter at t0

• NPC_D  Next Program Counter at t1

• NPC_Q is used to decide the address of
the next instruction to fetch.

Clock

NPC_Q will Be used for the
Fetch Address of the next
Instruction

Caches Interfaces Frontend – ICACHE
• Icache_dreq_o

• Icache_dreq_i

Req: Signal Request to ICACHE.

Kill_S1: Kills Request on 1° stage.

Kill_S2: Kills Request on 2° Stage.

Vaddr: Address of Request.

Ready: Cache Ready to accept requests.

Valid: Data in the interface is Valid.

Data: Data read from ICACHE.

Vaddr: Address of the Data.

Ex: Exceptions from the request.

Cache Interfaces

Cache Requests Examples
Signal Involved:

• NPC_Q & NPC_D;

• ICACHE_DREQ_O: Request Interface

• ICACHE_DREQ_I: Response Interface

• Sampled Data from ICACHE:
• Icache_data_q
• Icache_valid_q
• Icache_vaddr_q

Cache Requests Examples
Signal Involved:

• NPC_Q & NPC_D;

• ICACHE_DREQ_O: Request Interface

• ICACHE_DREQ_I: Response Interface

• Sampled Data from ICACHE:
• Icache_data_q
• Icache_valid_q
• Icache_vaddr_q

Cache Requests Examples
Signal Involved:

• NPC_Q & NPC_D;

• ICACHE_DREQ_O: Request Interface

• ICACHE_DREQ_I: Response Interface

• Sampled Data from ICACHE:
• Icache_data_q
• Icache_valid_q
• Icache_vaddr_q

Cache Requests Examples
Signal Involved:

• NPC_Q & NPC_D;

• ICACHE_DREQ_O: Request Interface

• ICACHE_DREQ_I: Response Interface

• Sampled Data from ICACHE:
• Icache_data_q
• Icache_valid_q
• Icache_vaddr_q

Cache Requests Examples
Signal Involved:

• NPC_Q & NPC_D;

• ICACHE_DREQ_O: Request Interface

• ICACHE_DREQ_I: Response Interface

• Sampled Data from ICACHE:
• Icache_data_q
• Icache_valid_q
• Icache_vaddr_q

Cache Requests Examples

SIGNAL T0 T1 T2 T3 T4

ICACHE_VADDR_Q 0x01FC 0x0200 0x0204 0x0208 0x01E2

DREQ_I.VADDR 0x0200 0x0204 0x0208 0x01E2 0x01E4

NPC_Q 0x0204 0x0208 0x020C 0x01E4 0x01E8

NPC_D 0x0208 0x020C 0x01E4 0x01E8 0x01EC

DREQ_O.VADDR 0x0204 0x0208 0x01E2 0x01E4 0x01E8

1

2

3

4

12

3

4

5

5

1

2

3
4

5

Cache Requests Examples

SIGNAL T0 T1 T2 T3 T4

ICACHE_VADDR_Q 0x01FC 0x0200 0x0204 0x0208 0x01E2

DREQ_I.VADDR 0x0200 0x0204 0x0208 0x01E2 0x01E4

NPC_Q 0x0204 0x0208 0x020C 0x01E4 0x01E8

NPC_D 0x0208 0x020C 0x01E4 0x01E8 0x01EC

DREQ_O.VADDR 0x0204 0x0208 0x01E2 0x01E4 0x01E8

1

2

3

4

12

3

4

5

5

1

2

3
4

5

Cache Requests Examples

SIGNAL T0 T1 T2 T3 T4

ICACHE_VADDR_Q 0x01FC 0x0200 0x0204 0x0208 0x01E2

DREQ_I.VADDR 0x0200 0x0204 0x0208 0x01E2 0x01E4

NPC_Q 0x0204 0x0208 0x020C 0x01E4 0x01E8

NPC_D 0x0208 0x020C 0x01E4 0x01E8 0x01EC

DREQ_O.VADDR 0x0204 0x0208 0x01E2 0x01E4 0x01E8

1

2

3

4

12

3

4

5

5

1

2

3
4

5

Kill Request
in S2

Invalidated

Cache Requests Examples

SIGNAL T0 T1 T2 T3 T4

ICACHE_VADDR_Q 0x01FC 0x0200 0x0204 0x0208 0x01E2

DREQ_I.VADDR 0x0200 0x0204 0x0208 0x01E2 0x01E4

NPC_Q 0x0204 0x0208 0x020C 0x01E4 0x01E8

NPC_D 0x0208 0x020C 0x01E4 0x01E8 0x01EC

DREQ_O.VADDR 0x0204 0x0208 0x01E2 0x01E4 0x01E8

1

2

3

4

12

3

4

5

5

1

2

3
4

5

Invalid

Cache Requests Examples

SIGNAL T0 T1 T2 T3 T4

ICACHE_VADDR_Q 0x01FC 0x0200 0x0204 0x0208 0x01E2

DREQ_I.VADDR 0x0200 0x0204 0x0208 0x01E2 0x01E4

NPC_Q 0x0204 0x0208 0x020C 0x01E4 0x01E8

NPC_D 0x0208 0x020C 0x01E4 0x01E8 0x01EC

DREQ_O.VADDR 0x0204 0x0208 0x01E2 0x01E4 0x01E8

1

2

3

4

12

3

4

5

5

1

2

3
4

5

Invalid

|

Deep Dive: Decode and Issue-Stage

We are here!

|

Decode Stage

F
R

O
N

T
E

N
D

ID - STAGE ISSUE - STAGE

Compressed

Decoder
DECODER

IS
S

U
E

 B
U

F
F

E
R

INSTRUCTION ACK.

Valid Is Compressed

Issue EntryExpanded

instruction
Valid

 Read Valid Entries

From Instruction

Queue

 Expand Compressed

instruction into non-

compress

 Write Decoded

Information into the

Issue Buffer

|

Decode Stage: Issue Interface

Program Counter [63:0]

Trans_ID: Refers to Scoreboard Entry

FU: Indicate type of Functional Unit

OP: Operation to be performed (e.g. ADD, MUL, etc)

RS1: Address of Resource OP 1

RS2: Address of Resource OP 2

RD: Address of Destination Register

RESULT: Initially Enocodes Other information

VALID: Valid Entry

USE IMMEDIATE

USE PC

Exception

BP: Branch Prediction Information

IS COMPRESSED

|

Issue Stage

IS
S

U
E

 B
U

F
F

E
R

ID
 S

TA
G

E
ISSUE STAGE

RENAME

SCOREBOARDISSUE READ

E
X

 S
TA

G
E

 P
IP

E

To/From

Commit

SB Full

Forw

Request

Forw Data

Issue Ack

Issue AckIssue Ack

FU Data

Decoded

Instruction

Valid

Renamed

Operands

Valid

|

RENAMING Avoids WAW Hazard by renaming Register

 Rare on In-order Single-Issue configuration but some Application benefits significantly

 Check renaming table

 Feed renamed operands to scoreboard

Update Renaming table:

 The renaming Table is updated only by the RD

 Tick/Untick Corresponding RD bit

Renaming Table

RS1

RS2

RD

1

1
1

1

1

1
0
0
0
0

0

0

0

GPR/FPR

RS1_Renamed

RS2_Renamed

RD_Renamed

Example:

RS1 RS2 RNT[17] RNT[10] RS1 REN. RS2 REN.

17 10 0 1 17 42

RD RNT[15] RD REN. RNT_N[15]

15 0 15 1

|

Issue Read Operands
Main Tasks:
 Check for Data Hazard

 Check if Functional Units are

Ready

 Forwarding Operands

 Interfacing to the Ex-Stage

|

Issue Read Operands: Step-By-Step
1. Check any inflight

instruction is writing to

source/destination

operands.

Clobbered Register

contains 64 entries (one

per each register and

renamed)

If Value = NONE

Read From Register File Check For

Forwarding

If Value = FU

(a) (b)

Two Type of Hazard:

• Source Operands: RAW

• Destination Reg: WAW

Mitigated With Renaming Mitigated With Forwarding

|

Issue Read Operands: Step-By-Step
1. Check any inflight

instruction is writing to

source/destination

operands.

2. (a) Read Values From

Register File

|

Issue Read Operands: Step-By-Step
1. Check any inflight

instruction is writing to

source/destination

operands.

2. (a) Read Values From

Register File

3. Check If FU is Ready

 Stall If not

|

Issue Read Operands: Step-By-Step
1. Check any inflight

instruction is writing to

source/destination

operands.

2. (a) Read Values From

Register File

3. Check If FU is Ready

 Stall If not

4. Check if Scoreboard

is full
 Stall if it is

5. ISSUE

|

Issue Read Operands: Step-By-Step
1. Check any inflight

instruction is writing to

source/destination

operands.

2. (b) Check if Forwardable

 Write Back Ports of Functional

Units

 Scoreboard Entries

|

Issue Read Operands: Step-By-Step
1. Check any inflight

instruction is writing to

source/destination

operands.

2. (b) Check if Forwardable

 Write Back Ports of Functional

Units

 Scoreboard Entries

3. Check If FU is Ready

 Stall If not

4. Check if Scoreboard

is full
 Stall if it is

5. ISSUE

|

ScoreBoard
Track Each Issued and not

Committed Instruction

Used for hiding load latency

Write pointer Advance on issued

Instructions

Read pointer Advance on Valid

Instructions

Issued Instructions are counted to

check if SB is Full2 Ports Wide

|

Deep Dive: Ex Stage

We are here!

|

Ex-Stage

E
X

 S
TA

G
E

 P
IP

E
ALU

MULT

FPU

LSU

DATA CACHE

S
C

O
R

E
B

O
A

R
D

W
rit

e
B

ac
k

P
or

ts

BU

To Frontend Functional Unit Are selected Via

enable from issue stage

Write Back Ports are Connected

to the Scoreboard

Branch Unit resolution is

Connected to Frontend

Multiplier and FPU are internally

Pipelined

Data Cache has 2 pipeline

Stages, support hit under miss

|

Ex Stage Interface

 The FU Data is shared Among

Functional Units

 Enable Decide which FU to

Activate

Enable

FU Data

Operator: Type Of Operation

Operand_a[63:0]: Value of OP_A

Operand_b[63:0]: Value of OP_B

Immediate[63:0]: Value of Immediate/OP_C

Trans_ID: ID in the Scoreboard

|

Ex Stage Interface
Enable

FU Data

Operator: Type Of Operation

Operand_a[63:0]: Value of OP_A

Operand_b[63:0]: Value of OP_B

Immediate[63:0]: Value of Immediate/OP_C

Trans_ID: ID in the Scoreboard

Valid
Trans_ID
Result[63:0]

 Results Are Redirected to the

scoreboard

|

Deep Dive: Commit Stage

We are here!

|

Commit Stage
 Commit Stage Read the

Scoreboard for Valid

Instructions

 Committing an instruction

has the following effect:
 Write result to register File

 Write to CSR

 Allow Store to write main Memory

 Commit Stage retires

Instruction in Order

S
C

O
R

E
B

O
A

R
D

Commit Stage

COMMIT

LOGICRF Enable

Commit Ack

Commit Store

Commit CSR

Commit Instruction

Exception

CSR Data

|

IMPLEMENTATION RESULTS: Area
 Area Results at 22nm

FDSOI from GF

 Biggest Contribution are

Cache Macros

 In general Sequential logic

dominates Area

|

IMPLEMENTATION RESULTS: Energy

|

PERFORMANCE: Embench-iot Benchmark Suite

|

PERFORMANCE: Embench-iot Benchmark Suite

|

PERFORMANCE: Embench-iot Benchmark Suite

|

PERFORMANCE: Embench-iot Benchmark Suite

|

PERFORMANCE: Embench-iot Benchmark Suite

With No Rename Scheme

|

PERFORMANCE: Embench-iot Benchmark Suite

1 Bit Rename Scheme Quite

effective on In-Order Architecutres

On Average 6.7% better IPC

Peak of 12%

|

CVA6 is open-source
 You can find all the RTL of the Core at:
 https://github.com/openhwgroup/cva6

 CVA6 is just one of the core born from the PULP Project
 https://pulp-platform.org/

 https://github.com/pulp-platform

 From RTL to Silicon

https://github.com/openhwgroup/cva6
https://pulp-platform.org/
https://github.com/pulp-platform

