
PULP PLATFORM
Open Source Hardware, the way it should be!

 http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Banshee: A Fast LLVM-Based RISC-V Binary Translator
ICCAD 2021

Samuel Riedel (sriedel@iis.ee.ethz.ch)
Fabian Schuiki (fschuiki@iis.ee.ethz.ch)
Paul Scheffler (paulsc@iis.ee.ethz.ch)
Florian Zaruba (zarubaf@iis.ee.ethz.ch)
Luca Benini (lbenini@iis.ee.ethz.ch)

mailto:sriedel@iis.ee.ethz.ch
mailto:fschuiki@iis.ee.ethz.ch
mailto:psulsc@iis.ee.ethz.ch
mailto:zarubaf@iis.ee.ethz.ch
mailto:lbenini@iis.ee.ethz.ch

|

Multi-core and manycore systems
 Crucial for modern workloads
 Machine learning
 Computational photography

 RISC-V[2] popular in research and
industry
 Open and modular ISA

 Open-source systems
 Celerity[3], Manticore[4], MemPool[5]

November 2021 2

https://www.nvidia.com/de-de/data-center/a100/

NVIDIA A100: 6912 Cores

https://cerebras.net/chip/

Cerebras WSE-2
850’000 Cores

https://arxiv.org/pdf/2008.06502.pdf

Manticore
4096 Cores

|

Accuracy

Speed

Extensibility

Detail

Computer architecture research
 Simulation and emulation tools
 Exploration
 Performance estimation
 Verification
 Software development

 Conflicting design goals[1]

 There is not ‘one to rule them all’

November 2021 3

|

Types of simulators
 Cycle-accurate
 Verilator[7], Questa Advanced Simulator[8]

 Very slow for large systems (tens of kIPS)

 Event-based
 gem5[9], GVSoC[10]

 Few MIPS, still too slow

 Functional
 QEMU[11,12], rv8[13], R2VM[24]

 Few GIPS, but only for a handful of cores

 None are well-suited for manycore!
November 2021 4

Accuracy

Speed

Extensibility

Detail

Cycle-accurate Event-based

Functional

|

Banshee
 Designed to simulate hundreds of 32-bit RISC-V cores
 Generic, cluster-based architecture
 Easy to extend (peripherals, ISA extensions)
 Explore architectures quickly

 Functional simulator
 Develop and debug software
 Fast simulation
 Instruction accurate
 Lightweight extension for performance estimation

 Open-source: https://github.com/pulp-platform/snitch/tree/master/sw/banshee

November 2021 5

|

Banshee uses static binary translation

 Static
 Compile entire binary before execution
 No self-modifying or relocatable code
 More optimization space

 Dynamic
 Only translate necessary code
 Supports self-modifying and relocatable

code

November 2021 6

Guest Binary Translation to IR
Optimization

and
Compilation

Host Binary

 Banshee aims to simulate compute-centric manycore
accelerators Static binary translation

|

Banshee overview
 Inputs
 RISC-V guest binary
 Configuration file

 Translation creates host binary
 Using the LLVM infrastructure

 Emulation runs the host binary
simulating the target architecture

 The runtime links the translation
and emulation

November 2021 7

Binary to IR
Translation
(IRBuilder)

LLVM
IR

opt.
IR to host
translation

Translation

Emulation
threads

System state
Hart 0

CPU0 CPU1

Hart 1

Hart N×MMemory

Cluster 0 R/W

host code Emulation

Legend Banshee DataLLVM

Runtime

symbols
calls

R/W

RISC-V binary
(RV32IMAFD) Banshee config

|

Translation to IR
 Map registers to memory accesses
 LLVM will promote them back to host registers

 For each instruction:
 Emit stores to get the register values
 Translate instruction to LLVM IR
 Write back to the register

 Compile and optimize with LLVM

November 2021 8

// RISC-V ASM
add a0, a1, a2

; LLVM IR
%v1 = load i32, i32* %ptr_a1
%v2 = load i32, i32* %ptr_a2
%v0 = add i32 %v1, %v2
store i32 %v0, i32* %ptr_a0

|

Translating memory access
 Load and store instructions
 Utilize host’s memory hierarchy
 Fast path
 Map frequently used memory directly to the host’s heap
 %ret = load i32, i32* %addr

 Slow path
 Model memory-mapped resources (peripherals) as runtime calls
 %ret = call i32 @runtime_load(i32* %addr)

November 2021 9

|

Runtime
 Use runtime calls for complex instructions
 Emitting complex IR is tedious
 Implement the behavior in a high-level language

 Runtime also provides access to global state

November 2021 10

int runtime_load(addr)
 if addr in control register
 // Implement control register
 if addr in peripheral
 // Handle peripheral read
 if addr in global memory
 // Read from shared memory

|

Emulation
 Use host’s parallelism
 Spawn one thread per guest core

 Reduce synchronization
 Minimize blocking runtime calls
 Do not model shared effects like bus

contention or shared caches

November 2021 11

Spawn emulation threads

Main thread

|

Generic Architecture
 Clustered architecture
 Private L1 memory allocated in heap
 Configurable number of cores

 Memory hierarchy modeled as
runtime calls
 Easy implementation of peripherals

November 2021 12

address map

memory peripherals control
registers

CPU0 CPUM

L1 memory

Cluster1 ClusterNCluster0

runtime calls

|

Manticore[4]

 Features 4096 RV32IMAFD cores
 Clustered design
 8 cores per cluster
 Shared tightly-coupled data memory
 One DMA per cluster modeled

 Supports various ISA extensions

November 2021 13

hierarchical interconnect

HBM UART control
registers

CPU0 CPU7

TCDM DMA

Cluster1 ClusterNCluster0

runtime calls

|

ISA Extensions
 Floating-point repetition (Xfrep[30])
 Repeats a sequence of FP instructions to eliminate branches
 Handled during translation

 (Indirect) Stream Semantic Registers (Xssr[16] & Xissr[31])
 Map a programmable memory stream to registers
 Eliminates explicit load and store instructions
 Address generation is implemented in the runtime

November 2021 14

|

MemPool [5]

 256 RV32IMA cores
 Single cluster design
 NUMA scratch-pad memory
 1, 3, or 5 cycles latency depending on

distance

 AXI interconnect to L2 memory
and peripherals

November 2021 15

AXI interconnect

L2
memory UART control

registers

MemPool Cluster

CPU0 CPU3

SPM1

CPU252 CPU255

SPM63

runtime calls

|

Performance estimation
 Instruction count as first-order approximation
 Optionally model read-after-write stalls
 Instruction latencies
 Load latency (per memory region)
 Scoreboard keeps track latencies

 Relies solely on private data
 No shared effects are modeled like bus contention or shared caches

November 2021 16

IF ID EX MEM latency

IF ID EX MEM WB

lw a0, 0(t0)

addi a0, a0, 4

WB

stall

|

Evaluation Setup
 Host System
 Two 64-core AMD EPYC 7742 CPUs @ 2.25 GHz
 No simultaneous multithreading
 256 MiB of L3 cache
 512 GiB system memory

 Each kernel runs 10k iterations to minimize static overhead
 All reports are averages of 10 runs

November 2021 17

|

Single Core Performance
 LFSR achieves 618 MIPS
 Fully compute bound

 Average performance:
 Integer kernels: 396 MIPS
 Dense FP kernels: 372 MIPS
 Sparse FP kernels: 358 MIPS

November 2021 18

Integer Floating-point

|

ISA Extension Performance
 Instruction rate drops with

ISA extensions
 Due to increase in simulated FP

instructions

 Simulated FP instructions
increase for dense kernels

 Sparse kernels do not show
the same benefit
 Costly runtime calls
 Random memory accesses

November 2021 19

|

Scaling with Manticore
 Close to ideal speedup
 Very good scaling
 LFRS: 72 GIPS
 GEMM: 40 GIPS

 Instruction rate flattens
after guest cores
overtake host cores
 But stays constant

November 2021 20

|

Scaling with MemPool
 Single cluster also scales
 Peak performance: 37 GIPS

 Shared L1 memory
leads to more cache
conflicts in host

November 2021 21

|

Comparison to related work

Simulator Method Single-core [MIPS] Multi-core [MIPS] Cores
gem5[19] Event-based 0.2 1.2 8

Sniper*[20] Interval-based 0.5 2.0 16

GVSoC[10] Event-based 2.5 20.0 8

QEMU[24] DBT 269.0 1’076.0 4

R2VM[24] DBT 413.0 1’652.0 4

riscvOVPsim[25] DBT 1’000.0 - -

Banshee (ours) SBT 618.0 72’397.0 128

November 2021 22

*All results are from RISC-V emulation except Sniper is from x86.

44×1.5×

|

Latency modeling evaluation
 Evaluate mmul implementations on MemPool
 Heavily relies on hiding latencies
 Use different ways of loop unrolling

 Instruction scheduling
in compiler (in italic)

 Compare to stalls
in RTL simulation

November 2021 23

|

Latency modeling results
 Instruction count matches
 Better runtime estimation

than instruction count
 Runtime estimation within

2% on average
 Adds 12% runtime

overhead

November 2021 24

1.7 2.9 2.8

|

Conclusion
 Banshee is:
 Fast: Up to 618 MIPS (single core) and 72 GIPS (128 cores)
 Extensible: Implemented various custom ISA extensions and peripherals
 Instruction accurate

 Evaluated on open-source systems
 Manticore (4096 cores) and MemPool (256 cores)

 Facilitates architecture exploration
 Helps developing software
 Open-source: https://github.com/pulp-platform/snitch/tree/master/sw/banshee

November 2021 25

https://github.com/pulp-platform/snitch/tree/master/sw/banshee

|

References
[1] A. Akram and L. Sawalha, “A Survey of Computer Architecture Simulation Techniques and Tools,” IEEE Access, vol. 7,
pp. 78120–78145, 2019.

[2] A. Waterman and K. Asanovi´c, “The RISC-V Instruction Set Manual, Volume I: User-Level ISA,” tech. rep., RISC-V
Foundation, 2019.

[3] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi, L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B.
Veluri, P. Gao, A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and M. B. Taylor, “The celerity open-source
511-core risc-v tiered accelerator fabric: Fast architectures and design methodologies for fast chips,” IEEE Micro, vol. 38,
no. 2, pp. 30–41, 2018.

[4] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-V Chiplet Architecture for Ultra-efficient Floating-
point Computing,” IEEE Micro, vol. 41, no. 2, pp. 36–42, 2020.

[5] M. Cavalcante, S. Riedel, A. Pullini, and L. Benini, “MemPool: A Shared-L1 Memory Many-Core Cluster with a Low-
Latency Interconnect,” in 2021 Design, Automation, and Test in Europe Conference and Exhibition (DATE), (Grenoble,
FR), pp. 701–706, mar 2021.

[7] W. Snyder, “Verilator,” 2021. Available at https://www.veripool.org/verilator.

[8] Siemens, “Questa Advanced Simulator — Siemens Digital Industries Software,” 2021. Available at
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu J. Hestness, D. R. Hower, T. Krishna, S.
Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.Wood, “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, pp. 1–7, may 2011.

[10] E. F. Zulian, G. Haugou, C. Weis, M. Jung, and N. Wehn, “System simulation with pulp virtual platform and systemc,”
in Proceedings of the Conference on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO ’20,
(New York, NY, USA), Association for Computing Machinery, 2020.

[11] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings of the annual conference on USENIX
Annual Technical Conference, 2005.

[12] E. G. Cota, P. Bonzini, A. Bennee, and L. P. Carloni, “Cross-ISA machine emulation for multicores,” in 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pp. 210–220, feb 2017.

[13] M. Clark and B. Hoult, “rv8: a high performance RISC-V to x86 binary translator,” in Workshop on Computer
Architecture Research with RISCV (CARRV), vol. 7, 2017.

[16] F. Schuiki, F. Zaruba, T. Hoefler, and L. Benini, “Stream Semantic Registers: A Lightweight RISC-V ISA Extension
Achieving Full Compute Utilization in Single-Issue Cores,” IEEE Transactions on Computers, vol. 70, pp. 212–227, feb
2021.

[19] T. Ta, L. Cheng, C. Batten, and T.-p. Runtimes, “Simulating Multi-Core RISC-V Systems in gem5 Task-Parallel
System Design Space Exploration,” in Workshop on Computer Architecture Research with RISC-V (CARRV), 2018.

[20] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the Level of Abstraction for Scalable and Accurate
Parallel Multi-Core Simulation,” in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis on - SC ’11, (New York, New York, USA), ACM Press, 2011.

[24] X. Guo and R. Mullins, “Accelerate Cycle-Level Full-System Simulation of Multi-Core RISC-V Systems with Binary
Translation,” in Workshop on Computer Architecture Research with RISC-V (CARRV), may 2020.

[25] Imperas Software Ltd., “riscvOVPsim - Free Imperas RISC-V Instruction Set Simulator,” 2021. Available at
https://www.imperas.com/riscvovpsim-free-imperas-risc-v-instruction-set-simulator.

[30] F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Snitch: A tiny Pseudo Dual-Issue Processor for Area and Energy
Efficient Execution of Floating-Point Intensive Workloads,” IEEE Transactions on Computers, feb 2020.

[31] P. Scheffler, F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Indirection Stream Semantic Register Architecture for
Efficient Sparse-Dense Linear Algebra,” in 2021 Design, Automation, and Test in Europe Conference and Exhibition
(DATE), 2021.

November 2021 26

	Banshee: A Fast LLVM-Based RISC-V Binary Translator ICCAD 2021
	Multi-core and manycore systems
	Computer architecture research
	Types of simulators
	Banshee
	Banshee uses static binary translation
	Banshee overview
	Translation to IR
	Translating memory access
	Runtime
	Emulation
	Generic Architecture
	Manticore[4]
	ISA Extensions
	MemPool [5]
	Performance estimation
	Evaluation Setup
	Single Core Performance
	ISA Extension Performance
	Scaling with Manticore
	Scaling with MemPool
	Comparison to related work
	Latency modeling evaluation
	Latency modeling results
	Conclusion
	References

