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Multi-core and manycore systems
 Crucial for modern workloads
 Machine learning
 Computational photography

 RISC-V[2] popular in research and 
industry
 Open and modular ISA

 Open-source systems
 Celerity[3], Manticore[4], MemPool[5]

November 2021 2

https://www.nvidia.com/de-de/data-center/a100/

NVIDIA A100: 6912 Cores

https://cerebras.net/chip/

Cerebras WSE-2
850’000 Cores

https://arxiv.org/pdf/2008.06502.pdf

Manticore
4096 Cores



|

Accuracy

Speed

Extensibility

Detail

Computer architecture research
 Simulation and emulation tools
 Exploration
 Performance estimation
 Verification
 Software development

 Conflicting design goals[1]

 There is not ‘one to rule them all’
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Types of simulators
 Cycle-accurate
 Verilator[7], Questa Advanced Simulator[8]

 Very slow for large systems (tens of kIPS)

 Event-based 
 gem5[9], GVSoC[10]

 Few MIPS, still too slow

 Functional 
 QEMU[11,12], rv8[13], R2VM[24]

 Few GIPS, but only for a handful of cores

 None are well-suited for manycore!
November 2021 4

Accuracy

Speed

Extensibility

Detail

Cycle-accurate Event-based

Functional



|

Banshee
 Designed to simulate hundreds of 32-bit RISC-V cores
 Generic, cluster-based architecture
 Easy to extend (peripherals, ISA extensions)
 Explore architectures quickly

 Functional simulator
 Develop and debug software
 Fast simulation
 Instruction accurate
 Lightweight extension for performance estimation

 Open-source: https://github.com/pulp-platform/snitch/tree/master/sw/banshee
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Banshee uses static binary translation

 Static
 Compile entire binary before execution
 No self-modifying or relocatable code
 More optimization space

 Dynamic
 Only translate necessary code
 Supports self-modifying and relocatable 

code
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Guest Binary Translation to IR
Optimization

and
Compilation

Host Binary

 Banshee aims to simulate compute-centric manycore 
accelerators  Static binary translation 
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Banshee overview
 Inputs
 RISC-V guest binary
 Configuration file

 Translation creates host binary
 Using the LLVM infrastructure

 Emulation runs the host binary 
simulating the target architecture

 The runtime links the translation 
and emulation
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Translation to IR
 Map registers to memory accesses
 LLVM will promote them back to host registers

 For each instruction:
 Emit stores to get the register values
 Translate instruction to LLVM IR
 Write back to the register

  Compile and optimize with LLVM
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// RISC-V ASM
add a0, a1, a2

; LLVM IR
%v1 = load i32, i32* %ptr_a1
%v2 = load i32, i32* %ptr_a2
%v0 = add i32 %v1, %v2
store i32 %v0, i32* %ptr_a0
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Translating memory access
 Load and store instructions
 Utilize host’s memory hierarchy
 Fast path
 Map frequently used memory directly to the host’s heap
 %ret = load i32, i32* %addr

 Slow path
 Model memory-mapped resources (peripherals) as runtime calls
 %ret = call i32 @runtime_load(i32* %addr)
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Runtime
 Use runtime calls for complex instructions
 Emitting complex IR is tedious
 Implement the behavior in a high-level language

 Runtime also provides access to global state
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int runtime_load(addr)
  if addr in control register
    // Implement control register
  if addr in peripheral
    // Handle peripheral read
  if addr in global memory
    // Read from shared memory
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Emulation
 Use host’s parallelism
 Spawn one thread per guest core

 Reduce synchronization
 Minimize blocking runtime calls
 Do not model shared effects like bus 

contention or shared caches
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Spawn emulation threads

Main thread
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Generic Architecture
 Clustered architecture
 Private L1 memory allocated in heap
 Configurable number of cores

 Memory hierarchy modeled as 
runtime calls
 Easy implementation of peripherals
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address  map

memory peripherals control
registers

CPU0 CPUM

L1 memory

Cluster1 ClusterNCluster0

runtime calls
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Manticore[4]

 Features 4096 RV32IMAFD cores
 Clustered design
 8 cores per cluster
 Shared tightly-coupled data memory
 One DMA per cluster modeled

 Supports various ISA extensions
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ISA Extensions
 Floating-point repetition (Xfrep[30])
 Repeats a sequence of FP instructions to eliminate branches
 Handled during translation

 (Indirect) Stream Semantic Registers (Xssr[16] & Xissr[31])
 Map a programmable memory stream to registers
 Eliminates explicit load and store instructions
 Address generation is implemented in the runtime
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MemPool [5]

 256 RV32IMA cores
 Single cluster design
 NUMA scratch-pad memory
 1, 3, or 5 cycles latency depending on 

distance

 AXI interconnect to L2 memory 
and peripherals
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AXI interconnect
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memory UART control
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Performance estimation
 Instruction count as first-order approximation
 Optionally model read-after-write stalls
 Instruction latencies
 Load latency (per memory region)
 Scoreboard keeps track latencies

 Relies solely on private data
 No shared effects are modeled like bus contention or shared caches
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IF ID EX MEM latency

IF ID EX MEM WB

lw   a0, 0(t0)

addi a0, a0, 4

WB

stall
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Evaluation Setup
 Host System
 Two 64-core AMD EPYC 7742 CPUs @ 2.25 GHz
 No simultaneous multithreading
 256 MiB of L3 cache
 512 GiB system memory

 Each kernel runs 10k iterations to minimize static overhead
 All reports are averages of 10 runs
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Single Core Performance
 LFSR achieves 618 MIPS
 Fully compute bound

 Average performance:
 Integer kernels: 396 MIPS
 Dense FP kernels: 372 MIPS
 Sparse FP kernels: 358 MIPS
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Integer Floating-point
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ISA Extension Performance
 Instruction rate drops with 

ISA extensions
 Due to increase in simulated FP 

instructions

 Simulated FP instructions 
increase for dense kernels

 Sparse kernels do not show 
the same benefit
 Costly runtime calls
 Random memory accesses
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Scaling with Manticore
 Close to ideal speedup
 Very good scaling
 LFRS: 72 GIPS
 GEMM: 40 GIPS

 Instruction rate flattens 
after guest cores 
overtake host cores
 But stays constant
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Scaling with MemPool
 Single cluster also scales
 Peak performance: 37 GIPS

 Shared L1 memory
leads to more cache 
conflicts in host
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Comparison to related work

Simulator Method Single-core [MIPS] Multi-core [MIPS] Cores
gem5[19] Event-based 0.2 1.2 8

Sniper*[20] Interval-based 0.5 2.0 16

GVSoC[10] Event-based 2.5 20.0 8

QEMU[24] DBT 269.0 1’076.0 4

R2VM[24] DBT 413.0 1’652.0 4

riscvOVPsim[25] DBT 1’000.0 - -

Banshee (ours) SBT 618.0 72’397.0 128
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*All results are from RISC-V emulation except Sniper is from x86.

44×1.5×



|

Latency modeling evaluation
 Evaluate mmul implementations on MemPool
 Heavily relies on hiding latencies
 Use different ways of loop unrolling

 Instruction scheduling
in compiler (in italic)

 Compare to stalls 
in RTL simulation
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Latency modeling results
 Instruction count matches
 Better runtime estimation 

than instruction count
 Runtime estimation within 

2% on average
 Adds 12% runtime 

overhead

November 2021 24

1.7 2.9 2.8
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Conclusion
 Banshee is:
 Fast: Up to 618 MIPS (single core) and 72 GIPS (128 cores)
 Extensible: Implemented various custom ISA extensions and peripherals
 Instruction accurate

 Evaluated on open-source systems
 Manticore (4096 cores) and MemPool (256 cores)

 Facilitates architecture exploration 
 Helps developing software
 Open-source: https://github.com/pulp-platform/snitch/tree/master/sw/banshee

November 2021 25

https://github.com/pulp-platform/snitch/tree/master/sw/banshee
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