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• CGRA can provide silicon approaching 
efficiency that of ASIC.

• CGRA can provide programmability 
typical of instruction processors.

• Recent CGRAs are competing for high-
performance accelerators.

Introduction: CGRA
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Reference: L. Liu et al., A Survey of Coarse-Grained Reconfigurable Architecture and 
Design: Taxonomy, Challenges, and Applications, ACM Computing Surveys, October 2019

CGRA : Coarse Grain Reconfigurable Architecture
ASIC : Application Specific Integrated Circuit



• CGRAs are used in near-sensor processing and low-power 
wearable applications.

• CGRA architectures demonstrated leading energy-efficiency 
when executing fixed-point workloads.

• Floating-Point (FP) support is becoming a must for IoT end-
nodes due to highly dynamic linear algebra algorithms [9].

• Native support for IEEE 754 FP data-types demands high-energy 
consumption.

Introduction: CGRA and Floating-Point
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Fixed-point Operations
• Only a range of limited numbers 

can be represented, even 
normalization (-1 to +1) doesn’t 
help much, as accuracy drops 
drastically [8].

• Less energy per operation due to 
the simpler architecture of 
integer arithmetic units [10].

• Converting floating-point to 
fixed-points before computing 
output, demands extra 
overheads.

Introduction: Fixed-point Vs. Floating-point
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Floating-point Operations
• Scaling is not an issue as much 

wider range of numbers can be 
represented using the same 
number of bits.

• Complex hardware leads to high 
energy consumption.

• Native support of FP brings no 
such overheads



• Transprecision computing → approximated computation does not 
automatically imply a quality loss
• Accuracy requirements on the final results
• Adaptive precision during computation for extra benefits (energy saving)

Transprecision Computing
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Reference: G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision
floating-point platform for ultra-low power computing. In DATE 2018, 2018.



• Preliminary experiments motivate smaller-than-32-bit FP types

• Several alternatives are possible. A few useful ones have been 
defined already.

Small-Float Formats for Transprecision Computing
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Some applications require 
large dynamic range…

…some others require higher 
precision

Reference: G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision
floating-point platform for ultra-low power computing. In DATE 2018, 2018.



High energy consumption !!!!

Introduction: CGRA and FP operations
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• IPA supports integer based 
operations only.

• Compiler supports single-cycle 
operations.

• No SIMD support.

• Integrated system consists of 
4x4 Processing Element (PE) 
array, a DMA controller, and a 
context memory.

Background: Integrate Programmable Array
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Reference: S. Das, D. Rossi, K. J. M. Martin, P. Coussy, L. Benini, A 142MOPS/mW
integrated programmable array accelerator for smart visual processing, ISCAS, 2017



• SFU is a major step in 
realizing Transprecision 
Computing.

• 1x IEEE-754 binary32,
2x IEEE-754 binary16,
2x binary16alt,
4x binary8

• 5 rounding modes.

• SFU achieves 18% higher 
energy-efficiency w.r.t. IEEE 
754 binary32.

Background: smallFloat Unit (SFU)
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Reference: S. Mach, F. Schuiki, F. Zaruba, and L. Benini. A 0.80 pj/flop, 1.24 Tflop/sW 8-to-64 bit Transprecision Floating-Point 
Unit for a 64 bit RISC-V Processor in 22 nm FD-SOI. In VLSI-SOC, 2019
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Contribution: TRANSPIRE
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• Energy consumption is always 
in ultra-low-power domain.

• Supports both integer and FP 
data-types.

• Features SIMD for FP 
operations.

TRANSPIRE

Floating-Point

Ultra-low-
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SIMD



Software

• Exploit a static mapping 
approach to natively support 
FP operations.

• Support for multi-cycle 
operations is introduced.

Contribution: TRANSPIRE
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Hardware

• Use of transprecision
computing to maintain energy 
consumption in ultra-low 
power domain.

• For optimal use of 32-bit wide 
datapath, SIMD is introduced.



• TRANSPIRE is a programmable 
accelerator loosely coupled to a host 
CPU and shares data through a Tightly 
Coupled Data Memory (TCDM).

• The integrated system consists of 4x2 
heterogenous PE array, a DMA 
controller, and a context memory.

• PEs are connected through a mesh 
torus network for sharing data with 
adjacent PEs and a bus network for 
context broadcast.

TRANSPIRE: Integrated System
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• TRANSPIRE supports both data 
and control flow including loops.

• TRANSPIRE has its own 
Instruction Set Architecture (ISA).

• Each PE supports both integer and 
FP datatype operations

• Hardware based Flexible Address 
Generator Unit (FAGU) is also 
introduced to further accelerate 
the address computations.

TRANSPIRE: Architecture
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• An mini-SFU (mSFU) includes 2 slices 
of binary16alt units and 4 slices of 
binary8 units.

• Divide-Square-root (DS) unit includes 
binary16alt based divide and square-
root operators.

• Only 1 rounding mode i.e., truncation 
is used for FP operations.

TRANSPIRE: Architecture (mini-SFU)
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SFU

• 1x IEEE-754 binary32,
2x IEEE-754 binary16,
2x binary16alt,
4x binary8

• 5 rounding mode

• 15 Operators

• Total cell area: 81,306 μm2

SFU Vs. mSFU
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mSFU

• 2x binary16alt,
4x binary8

• 1 rounding mode 
• Truncation

• 7 Operators
• f_add, f_sub, f_mul, f_div, f_sqrt, 

f_LT, f_abs

• Total cell area: 3,335 μm2



• The compilation flow exploits the 
GCC front-end to get the 
intermediate representation of the 
application code.

• TRANSPIRE is modeled as a bipartite 
directed graph with operator and 
register nodes.

• The homomorphism between 
TRANSPIRE model and DFG makes 
the mapping of CDFG onto 
TRANSPIRE a sub-graph finding 
problem.

TRANSPIRE: Compilation Flow
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• Previous version of compiler 
supported operations with 
single cycle latency only.

• Code modification is required 
for identification of FP 
operations. 

• It took only few hours to re-
write all of the kernels used in 
this paper.

TRANSPIRE: Compiler
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int i, j, k; float a[30], b[30], c[256][40], out;

for (i=30; i>0; i--){

for (j=0; j<40; j++){

for (k=0; k<256; k++){

out = a[i] + ( b[i] * c[k][j] );

}}}

int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt( a[i] , fmul16alt( b[i] , c[k][j] ) );

}}}

Original Code

Modified Code (explicit SIMD)



• DFG is analyzed and multi-cycle operations 
are detected.

• Each multi-cycle operation node is then 
transformed by adding dummy nodes.

• Only first node is sent for mapping and 
binding.
• PE is locked for multi-cycle operation

• Obtained mapping is then copied onto 
dummy nodes with updated 
(incremented) timestamp.

TRANSPIRE: Static Mapping
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• While mapping multi-cycle 
operations on TRANSPIRE, 
there are 2 main challenges to 
address.

1. All consecutive multi-cycle 
operations should be 
mapped onto the same PE.

2. Impose minimum restriction 
on the algorithm in terms of 
resource availability.

TRANSPIRE: Compiler Challenges
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int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt( a[i] , fmul16alt( b[i] , c[k][j] ) );

}}}



• All consecutive multi-cycle 
operations should be mapped 
onto the same PE, to eliminate 
the chances of undesirable MOVE
operations.

Solution:
• Carefully removing unwanted 

nodes between 2 consecutive 
multi-cycle operations which 
might cause MOVE operations.

• Updating the algorithm for 
resource availability after a PE has 
been locked for performing multi-
cycle operation.

TRANSPIRE: Compiler Challenge #1
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int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt( a[i] , fmul16alt( b[i] , c[k][j] ) );

}}}



• Impose minimum restriction on 
the algorithm in terms of resource 
availability (i.e., minimizing data 
routing by mapping nodes which 
share data onto adjacent PEs).

Solution: 
• Immediately unlock that PE for 

mapping of the next operation, 
without consuming any extra 
cycles.

• If not done then, next FP 
operations is mapped onto other 
tile resulting in extra MOVE
operations or decreased PE 
utilization.

TRANSPIRE: Compiler Challenge #2
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int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt( a[i] , fmul16alt( b[i] , c[k][j] ) );

}}}
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• These applications implement the fundamental algorithms used in two domains 
relevant for ultra-low-power systems, near-sensor computing and embedded 
machine learning.

Experiments: Kernels
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Kernel Operations Executed Highest loop iteration Input Data size (bits)

mean_covariance 397,348 47,104 94,208

Householder 35,632 1,360 9,216

Accumulate 106,298 1,240 8,704

Diagonalize 74,987 2,368 9,216

PC 168,738 11,776 102,400

CONV 766,728 4,096 131,072

DWT 39,456 448 16,384

SVM 15,630 896 72,000

P
C
A



• Accuracy Deviation is always less than 10% w.r.t. IEEE-754 FP formats.

Accuracy Performance
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Kernel Average Deviation (%) Data-type

mean_covariance 4.80 binary16alt

Householder 0.33 binary16alt

Accumulate 9.03 binary16alt

Diagonalize 5.49 binary16alt

PC 1.54 binary16alt

CONV 2.32 binary8

DWT 6.98 binary8

SVM 7.11 binary8



• All experiments have been performed on a post-synthesis 
netlist.

• 28nm UTBB – FDSOI process node

• 50 MHz frequency, 0.6V operating voltage

• Worst-case analysis corner ( slow NMOS, slow PMOS, 125°C , 
low power low Vt transistors )

Experimental Setup
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Area Results: PE, mSFU, and DS
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• TRANSPIRE’s area overhead is 1.25x only w.r.t. RI5CY_SFU

Area Comparison
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TRANSPIRE (μm2) RI5CY_SFU (μm2) TRANSPIRE_FPU (μm2) RI5CY_FPU (μm2)

DMA Controller 593

+  4 KiB 
Instruction Cache

593

+  4 KiB 
Instruction Cache

Interconnect 6,273 6,273

Context Memory 9,345 9,345

TCDM 65,164 64,164

PE Array 186,407 174,230

Total Cell Area 267,784 213,371 255,605 185,812

TRANSPIRE Architecture presented in this paper

TRANSPIRE_FPU TRANSPIRE featuring IEEE FPU

RI5CY_SFU RISC-V based CPU featuring SFU

RI5CY_FPU RISC-V based CPU featuring IEEE FPU
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• TRANSPIRE achieves up to 10.06x better performance w.r.t. RI5CY_SFU

Performance Results
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Kernel TRANSPIRE 
(binary8)
(cycles)

RI5CY_SFU 
(binary8)
(cycles)

CONV 268,179 1 455,097

DWT 11,140 16,912

SVM 11,408 114,747
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• Energy consumption of TRANSPIRE is up to 12.91x less w.r.t. RI5CY_SFU

Energy Results

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 33

Kernel TRANSPIRE 
(binary8)

(uJ)

RI5CY_SFU 
(binary8)

(uJ)

CONV 3.036 21.506

DWT 0.124 0.256

SVM 0.123 1.588



• TRANSPIRE reaches a maximum of 224 MOPS/mW

Energy-efficiency Results
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• Exploit a static mapping approach to natively support FP 
operations in CGRA together with transprecision computing to 
maintain energy consumption in ultra-low power domain.

• TRANSPIRE achieves a maximum of 10.06x performance gain 
w.r.t RI5CY_SFU

• TRANSPIRE consumes up to 12.91x less energy w.r.t RI5CY_SFU

• Area overhead is 1.25x only w.r.t RI5CY_SFU

Conclusion
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THANK YOU
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