
Rohit Prasad, S. Das, K. J. M. Martin, G. Tagliavini, P. Coussy,
L. Benini, and D. Rossi

TRANSPIRE: An energy-efficient
TRANSprecision floating-point Programmable

archItectuRE

• Introduction

• Background

• TRANSPIRE

• Experiments & Results

• Conclusion

Agenda

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 2

• Introduction

• Background

• TRANSPIRE

• Experiments & Results

• Conclusion

Agenda

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 3

• CGRA can provide silicon approaching
efficiency that of ASIC.

• CGRA can provide programmability
typical of instruction processors.

• Recent CGRAs are competing for high-
performance accelerators.

Introduction: CGRA

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 4

Reference: L. Liu et al., A Survey of Coarse-Grained Reconfigurable Architecture and
Design: Taxonomy, Challenges, and Applications, ACM Computing Surveys, October 2019

CGRA : Coarse Grain Reconfigurable Architecture
ASIC : Application Specific Integrated Circuit

• CGRAs are used in near-sensor processing and low-power
wearable applications.

• CGRA architectures demonstrated leading energy-efficiency
when executing fixed-point workloads.

• Floating-Point (FP) support is becoming a must for IoT end-
nodes due to highly dynamic linear algebra algorithms [9].

• Native support for IEEE 754 FP data-types demands high-energy
consumption.

Introduction: CGRA and Floating-Point

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 5

Fixed-point Operations
• Only a range of limited numbers

can be represented, even
normalization (-1 to +1) doesn’t
help much, as accuracy drops
drastically [8].

• Less energy per operation due to
the simpler architecture of
integer arithmetic units [10].

• Converting floating-point to
fixed-points before computing
output, demands extra
overheads.

Introduction: Fixed-point Vs. Floating-point

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 6

Floating-point Operations
• Scaling is not an issue as much

wider range of numbers can be
represented using the same
number of bits.

• Complex hardware leads to high
energy consumption.

• Native support of FP brings no
such overheads

• Transprecision computing → approximated computation does not
automatically imply a quality loss
• Accuracy requirements on the final results
• Adaptive precision during computation for extra benefits (energy saving)

Transprecision Computing

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 7

Minimum
precision
requiredTraditional computing

Machine
precision

Computation progress

Energy saving

Tr
an

sp
re

ci
si

o
n

Su
p

p
o

rt …
…

Reference: G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision
floating-point platform for ultra-low power computing. In DATE 2018, 2018.

• Preliminary experiments motivate smaller-than-32-bit FP types

• Several alternatives are possible. A few useful ones have been
defined already.

Small-Float Formats for Transprecision Computing

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 8

Some applications require
large dynamic range…

…some others require higher
precision

Reference: G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision
floating-point platform for ultra-low power computing. In DATE 2018, 2018.

High energy consumption !!!!

Introduction: CGRA and FP operations

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 9

Integer
operations

are
combined

Floating-
Point

Fixed-
Point

FloRa [1]
Butter array [3]

WAVE CGRA [2]
Stream Dual-Track-CGRA [4]

• Introduction

• Background

• TRANSPIRE

• Experiments & Results

• Conclusion

Agenda

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 10

• IPA supports integer based
operations only.

• Compiler supports single-cycle
operations.

• No SIMD support.

• Integrated system consists of
4x4 Processing Element (PE)
array, a DMA controller, and a
context memory.

Background: Integrate Programmable Array

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 11

Reference: S. Das, D. Rossi, K. J. M. Martin, P. Coussy, L. Benini, A 142MOPS/mW
integrated programmable array accelerator for smart visual processing, ISCAS, 2017

• SFU is a major step in
realizing Transprecision
Computing.

• 1x IEEE-754 binary32,
2x IEEE-754 binary16,
2x binary16alt,
4x binary8

• 5 rounding modes.

• SFU achieves 18% higher
energy-efficiency w.r.t. IEEE
754 binary32.

Background: smallFloat Unit (SFU)

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 12

Reference: S. Mach, F. Schuiki, F. Zaruba, and L. Benini. A 0.80 pj/flop, 1.24 Tflop/sW 8-to-64 bit Transprecision Floating-Point
Unit for a 64 bit RISC-V Processor in 22 nm FD-SOI. In VLSI-SOC, 2019

• Introduction

• Background

• TRANSPIRE

• Experiments & Results

• Conclusion

Agenda

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 13

Contribution: TRANSPIRE

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 14

• Energy consumption is always
in ultra-low-power domain.

• Supports both integer and FP
data-types.

• Features SIMD for FP
operations.

TRANSPIRE

Floating-Point

Ultra-low-
power

SIMD

Software

• Exploit a static mapping
approach to natively support
FP operations.

• Support for multi-cycle
operations is introduced.

Contribution: TRANSPIRE

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 15

Hardware

• Use of transprecision
computing to maintain energy
consumption in ultra-low
power domain.

• For optimal use of 32-bit wide
datapath, SIMD is introduced.

• TRANSPIRE is a programmable
accelerator loosely coupled to a host
CPU and shares data through a Tightly
Coupled Data Memory (TCDM).

• The integrated system consists of 4x2
heterogenous PE array, a DMA
controller, and a context memory.

• PEs are connected through a mesh
torus network for sharing data with
adjacent PEs and a bus network for
context broadcast.

TRANSPIRE: Integrated System

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 16

CPU

Instruction

Cache

DMAC

SoC Bus

TCDM
Context Memory

PE_00 PE_01 PE_02 PE_03

PE_10 PE_11 PE_12 PE_13

• TRANSPIRE supports both data
and control flow including loops.

• TRANSPIRE has its own
Instruction Set Architecture (ISA).

• Each PE supports both integer and
FP datatype operations

• Hardware based Flexible Address
Generator Unit (FAGU) is also
introduced to further accelerate
the address computations.

TRANSPIRE: Architecture

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 17

Controller IS

RRF

LSU

CR ALU mSFU

OPR

CRF

FAGU

Op_A

Control bits to all

PEs
To and from memory

interconnect

To neighbouring

PEs

IRF

Op_B

DS

• An mini-SFU (mSFU) includes 2 slices
of binary16alt units and 4 slices of
binary8 units.

• Divide-Square-root (DS) unit includes
binary16alt based divide and square-
root operators.

• Only 1 rounding mode i.e., truncation
is used for FP operations.

TRANSPIRE: Architecture (mini-SFU)

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 18

Shared common

modules

2x binary16alt modules

4x binary8 modules

SIMD

SFU

• 1x IEEE-754 binary32,
2x IEEE-754 binary16,
2x binary16alt,
4x binary8

• 5 rounding mode

• 15 Operators

• Total cell area: 81,306 μm2

SFU Vs. mSFU

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 19

mSFU

• 2x binary16alt,
4x binary8

• 1 rounding mode
• Truncation

• 7 Operators
• f_add, f_sub, f_mul, f_div, f_sqrt,

f_LT, f_abs

• Total cell area: 3,335 μm2

• The compilation flow exploits the
GCC front-end to get the
intermediate representation of the
application code.

• TRANSPIRE is modeled as a bipartite
directed graph with operator and
register nodes.

• The homomorphism between
TRANSPIRE model and DFG makes
the mapping of CDFG onto
TRANSPIRE a sub-graph finding
problem.

TRANSPIRE: Compilation Flow

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 20

C code

GCC

compilation

CDFG

Multicycle

Operation

Serialization

Assembly code

Graph

Transformation

CGRA Model

Stochastic

Pruning

Scheduling &

Placement
Solutions?

Last Node?

Changes?

Last DFG?

No

FAIL

No

No

Yes

Yes

START
END

Reference: S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini. Efficient mapping of
cdfg onto coarse-grained reconfigurable array architectures. In ASP-DAC 2017, 2017.

• Previous version of compiler
supported operations with
single cycle latency only.

• Code modification is required
for identification of FP
operations.

• It took only few hours to re-
write all of the kernels used in
this paper.

TRANSPIRE: Compiler

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 21

int i, j, k; float a[30], b[30], c[256][40], out;

for (i=30; i>0; i--){

for (j=0; j<40; j++){

for (k=0; k<256; k++){

out = a[i] + (b[i] * c[k][j]);

}}}

int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt(a[i] , fmul16alt(b[i] , c[k][j]));

}}}

Original Code

Modified Code (explicit SIMD)

• DFG is analyzed and multi-cycle operations
are detected.

• Each multi-cycle operation node is then
transformed by adding dummy nodes.

• Only first node is sent for mapping and
binding.
• PE is locked for multi-cycle operation

• Obtained mapping is then copied onto
dummy nodes with updated
(incremented) timestamp.

TRANSPIRE: Static Mapping

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 22

fmul

a

c

b

fmul

a

c

b

dummy

Multi-cycle
Operation
Serialization

• While mapping multi-cycle
operations on TRANSPIRE,
there are 2 main challenges to
address.

1. All consecutive multi-cycle
operations should be
mapped onto the same PE.

2. Impose minimum restriction
on the algorithm in terms of
resource availability.

TRANSPIRE: Compiler Challenges

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 23

int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt(a[i] , fmul16alt(b[i] , c[k][j]));

}}}

• All consecutive multi-cycle
operations should be mapped
onto the same PE, to eliminate
the chances of undesirable MOVE
operations.

Solution:
• Carefully removing unwanted

nodes between 2 consecutive
multi-cycle operations which
might cause MOVE operations.

• Updating the algorithm for
resource availability after a PE has
been locked for performing multi-
cycle operation.

TRANSPIRE: Compiler Challenge #1

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 24

int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt(a[i] , fmul16alt(b[i] , c[k][j]));

}}}

• Impose minimum restriction on
the algorithm in terms of resource
availability (i.e., minimizing data
routing by mapping nodes which
share data onto adjacent PEs).

Solution:
• Immediately unlock that PE for

mapping of the next operation,
without consuming any extra
cycles.

• If not done then, next FP
operations is mapped onto other
tile resulting in extra MOVE
operations or decreased PE
utilization.

TRANSPIRE: Compiler Challenge #2

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 25

int i, j, k; float a[15], b[15], c[256][20], out;

for (i=15; i>0; i--){

for (j=0; j<20; j++){

for (k=0; k<256; k++){

out = fadd16alt(a[i] , fmul16alt(b[i] , c[k][j]));

}}}

• Introduction

• Background

• TRANSPIRE

• Experiments & Results

• Conclusion

Agenda

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 26

• These applications implement the fundamental algorithms used in two domains
relevant for ultra-low-power systems, near-sensor computing and embedded
machine learning.

Experiments: Kernels

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 27

Kernel Operations Executed Highest loop iteration Input Data size (bits)

mean_covariance 397,348 47,104 94,208

Householder 35,632 1,360 9,216

Accumulate 106,298 1,240 8,704

Diagonalize 74,987 2,368 9,216

PC 168,738 11,776 102,400

CONV 766,728 4,096 131,072

DWT 39,456 448 16,384

SVM 15,630 896 72,000

P
C
A

• Accuracy Deviation is always less than 10% w.r.t. IEEE-754 FP formats.

Accuracy Performance

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 28

Kernel Average Deviation (%) Data-type

mean_covariance 4.80 binary16alt

Householder 0.33 binary16alt

Accumulate 9.03 binary16alt

Diagonalize 5.49 binary16alt

PC 1.54 binary16alt

CONV 2.32 binary8

DWT 6.98 binary8

SVM 7.11 binary8

• All experiments have been performed on a post-synthesis
netlist.

• 28nm UTBB – FDSOI process node

• 50 MHz frequency, 0.6V operating voltage

• Worst-case analysis corner (slow NMOS, slow PMOS, 125°C ,
low power low Vt transistors)

Experimental Setup

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 29

Area Results: PE, mSFU, and DS

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 30

mSFU

9% DS

4%

ALU

8%

IRF

28%RRF

6%

CRF+FAGU

41%

others

4%

mSFU+DS is 1.42x smaller than FPU+DS mSFU+DS takes 13% of PE‘s total cell
area

2501 2304

2251

1031

0

1000

2000

3000

4000

5000

FPU+DS mSFU+DS

A
re

a
 (

μ
m

2
)

DS mSFU

FPU

Area breakdown of single PE

IEEE

1
x

IE
EE

-7
54

 b
in

ar
y3

2

1x binary16alt

2x binary16alt
4x binary8

Divide-Square_root UnitIEEE-754 binary32 FP Unit

• TRANSPIRE’s area overhead is 1.25x only w.r.t. RI5CY_SFU

Area Comparison

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 31

TRANSPIRE (μm2) RI5CY_SFU (μm2) TRANSPIRE_FPU (μm2) RI5CY_FPU (μm2)

DMA Controller 593

+ 4 KiB
Instruction Cache

593

+ 4 KiB
Instruction Cache

Interconnect 6,273 6,273

Context Memory 9,345 9,345

TCDM 65,164 64,164

PE Array 186,407 174,230

Total Cell Area 267,784 213,371 255,605 185,812

TRANSPIRE Architecture presented in this paper

TRANSPIRE_FPU TRANSPIRE featuring IEEE FPU

RI5CY_SFU RISC-V based CPU featuring SFU

RI5CY_FPU RISC-V based CPU featuring IEEE FPU

0

100

200

300

400

500

600

700

800

mean_cov householder accumulate diagonalize PC

C
y
cl

es
(T

h
o

u
sa

n
d

s)

TRANSPIRE (binary16alt) RI5CY_SFU (binary16alt)

TRANSPIRE_FPU (binary32) RI5CY_FPU (binary32)

• TRANSPIRE achieves up to 10.06x better performance w.r.t. RI5CY_SFU

Performance Results

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 32

Kernel TRANSPIRE
(binary8)
(cycles)

RI5CY_SFU
(binary8)
(cycles)

CONV 268,179 1 455,097

DWT 11,140 16,912

SVM 11,408 114,747

0

1

2

3

4

5

6

7

8

mean_cov householder accumulate diagonalize PC

E
n

er
g

y
 (

μ
 J

)

TRANSPIRE (binary16alt) RI5CY_SFU (binary16alt)

TRANSPIRE_FPU (binary32) RI5CY_FPU (binary32)

• Energy consumption of TRANSPIRE is up to 12.91x less w.r.t. RI5CY_SFU

Energy Results

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 33

Kernel TRANSPIRE
(binary8)

(uJ)

RI5CY_SFU
(binary8)

(uJ)

CONV 3.036 21.506

DWT 0.124 0.256

SVM 0.123 1.588

• TRANSPIRE reaches a maximum of 224 MOPS/mW

Energy-efficiency Results

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 34

224

189

122
110

185

156

115

90
99

138

0

50

100

150

200

250

mean_cov householder accumulate diagonalize PC

E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

M
O

P
S

/m
W

) TRANSPIRE

TRANSPIRE_FPU

60

24

RI5CY_SFU

RI5CY_FPU

• Introduction

• Background

• TRANSPIRE

• Experiments & Results

• Conclusion

Agenda

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 35

• Exploit a static mapping approach to natively support FP
operations in CGRA together with transprecision computing to
maintain energy consumption in ultra-low power domain.

• TRANSPIRE achieves a maximum of 10.06x performance gain
w.r.t RI5CY_SFU

• TRANSPIRE consumes up to 12.91x less energy w.r.t RI5CY_SFU

• Area overhead is 1.25x only w.r.t RI5CY_SFU

Conclusion

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 36

THANK YOU

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 37

1. M. Jo, D. Lee, K. Han, and K. Choi. Design of a coarse-grained reconfigurable architecture with floating-point support and comparative
study. Integration, the VLSI Journal, 47, Jan. 2013

2. C. Nicol. A Coarse Grain Reconfigurable Array (CGRA) for statically scheduled data flow computing. WAVE Computing, 2016.

3. C. Brunelli, F. Garzia, D. Rossi, and J. Nurmi. A Coarse-grain Reconfigurable Architecture for Multimedia Applications Supporting Subword
and Floating-point Calculations. J. Syst. Archit., 56(1), 2010

4. X. Fan, D. Wu, W. Cao, W. Luk, and L. Wang. Stream Processing Dual-Track CGRA for Object Inference. IEEE Transactions on VLSI Systems,
26(6), 2018.

5. G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision floating-point platform for ultra-low power computing. In
DATE 2018, 2018.

6. S. Mach, F. Schuiki, F. Zaruba, and L. Benini. A 0.80 pj/flop, 1.24 Tflop/sW 8-to-64 bit Transprecision Floating-Point Unit for a 64 bit RISC-
V Processor in 22 nm FD-SOI. In VLSI-SOC, 2019

7. S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini. Efficient mapping of cdfg onto coarse-grained reconfigurable array
architectures. In ASP-DAC 2017, 2017.

8. Chapter 8: Fixed Point vs. Floating Point , DSP System Design: Using the TMS320C6000 by Nasser Kehtarnavaz , Mansour Keramat

9. STM32L4 MCU series: Excellence in ultra-low-power with performance. STM32 Ultra Low Power MCUs, 2018.

10. S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini. A Transprecision Floating-Point Architecture for Energy-Efficient Embedded
Computing. In ISCAS, pages 1–5, May 2018.

11. S. Das, D. Rossi, K. J. M. Martin, P. Coussy, L. Benini, A 142MOPS/mW integrated programmable array accelerator for smart visual
processing, ISCAS, 2017.

References

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 38

