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Introduction: CGRA

Energy-efficiency

* CGRA can provide silicon approaching
efficiency that of ASIC.

* CGRA can provide programmability
typical of instruction processors.

* Recent CGRAs are competing for high-
performance accelerators.

CGRA : Coarse Grain Reconfigurable Architecture
ASIC : Application Specific Integrated Circuit

1000

100

10 4

14

MOPS/mW)
4

-

E

1000

100

10

1

(MOPS/mW)
A

Low-level High-level ”
programming  programming Flexibility
(Programming)

Near-Fixed

nergy-efficiency

»

Performance
(GOPS)

Reference: L. Liu et al., A Survey of Coarse-Grained Reconfigurable Architecture and
Design: Taxonomy, Challenges, and Applications, ACM Computing Surveys, October 2019
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Introduction: CGRA and Floating-Point

* CGRAs are used in near-sensor processing and low-power
wearable applications.

* CGRA architectures demonstrated leading energy-efficiency
when executing fixed-point workloads.

* Floating-Point (FP) support is becoming a must for loT end-
nodes due to highly dynamic linear algebra algorithms [9].

* Native support for IEEE 754 FP data-types demands high-energy
consumption.

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 5



Introduction: Fixed-point Vs. Floating-point

Fixed-point Operations

Floating-point Operations

* Only a range of limited numbers
can be represented, even
normalization (-1 to +1) doesn’t
help much, as accuracy drops
drastically [8].

* Less energy per operation due to
the simpler architecture of
integer arithmetic units [10].

* Converting floating-point to
fixed-points before computing
output, demands extra
overheads.
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* Scaling is not an issue as much
wider range of numbers can be
represented using the same
number of bits.

* Complex hardware leads to high
energy consumption.

* Native support of FP brings no
such overheads
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Transprecision Computing

* Transprecision computing = approximated computation does not
automatically imply a quality loss
* Accuracy requirements on the final results
* Adaptive precision during computation for extra benefits (energy saving)
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E _ﬁ Reference: G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision
_ floating-point platform for ultra-low power computing. In DATE 2018, 2018.
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Small-Float Formats for Transprecision Computing

* Preliminary experiments motivate smaller-than-32-bit FP types

* Several alternatives are possible. A few useful ones have been
defined already.

s exponent mantissa
:— IEEE binary32 Some applications require
11 8 L ! 23 ) large dynamic range...
I [
-same dynamic range as binary32
-much less precision than binary32
11 8 ]l 7 J
:- -less dynamic range than binary32 . . .
lesgrselslor han BIREHE2 IEEE binary16 ...some others require higher
e ] precision
- same dynamic range as binary16 bi 8
.__- - less precision than binary16 ey Reference: G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A transprecision
1 —5_1J 121 floating-point platform for ultra-low power computing. In DATE 2018, 2018.
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Introduction: CGRA and FP operations
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* Background

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 10



Background: Integrate Programmable Array

*IPA supports integer based Gobal Conte —
operations only.

* Compiler supports single-cycle
operations.

* No SIMD support.

* Integrated system consists of
4x4 Processing Element (PE)
array, a DMA controller, and a
context memory.

Reference: S. Das, D. Rossi, K. J. M. Martin, P. Coussy, L. Benini, A 142MOPS/mW
integrated programmable array accelerator for smart visual processing, ISCAS, 2017
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Background: smallFloat Unit (SFU)

* SFU is a major step in il T
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* TRANSPIRE
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Contribution: TRANSPIRE

* Energy consumption is always
in ultra-low-power domain. Floating-Point

* Supports both integer and FP
data-types.

* Features SIMD for FP TRANSPIRE
operations.

Ultra-low-
power

SIMD
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Contribution: TRANSPIRE

Software Hardware
* Exploit a static mapping » Use of transprecision
approach to natively support computing to maintain energy
FP operations. consumption in ultra-low

power domain.

e Support for multi-cycle * For optimal use of 32-bit wide
operations is introduced. datapath, SIMD is introduced.
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TRANSPIRE: Integrated System

* TRANSPIRE is a programmable
accelerator loosely coupled to a host
CPU and shares data through a Tightly
Coupled Data Memory (TCDM).

* The integrated system consists of 4x2 rcoo M ocor B oe oo B oe o5
heterogenous PE array, a DMA
controller, and a context memory. NN SN U

* PEs are connected through a mesh "Cane

torus network for sharing data with
adjacent PEs and a bus network for
context broadcast.

m : Tile with ALU, mSFU, and DS m : Tile with ALU and mSFU
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TRANSPIRE: Architecture

* TRANSPIRE supports both data LT
and control flow including loops. [ [T c— '~

CRF | » RRF

* TRANSPIRE has its own i 5

Instruction Set Architecture (ISA). FAGU
v

* Each PE supports both integer and Lsu H |Controller <= 1S « IRF | | OPR
FP datatype operations [ | |

A

. Toand from memory Contrgl bists toall To neighbouring
* Hardware based Flexible Address "= - &
G e n e rato r U n it ( FAG U ) is a I SO CRF : Constant Register File CR : Condition Register

H FAGU : Flexible Address Generation Unit OPR : OutPut Register
I nt rOd u ce d to fu rt h e r a cce I e rate LSU : Load Store unit ALU : Arithmetic Logic Unit

° RRF : Regular Register File mSFU  : mini-smallFLoat Unit
t h e a d d re S S co m p u tat I O n s ° IRF : Instruction Register File DS : Divide-Square-root Unit
IS : Instruction Synchronizer PE : Processing Element
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TRANSPIRE: Architecture (mini-SFU)

* An mini-SFU (mSFU) includes 2 slices Shared common
of binaryl6alt units and 4 slices of
binary8 units. \/
* Divide-Square-root (DS) unit includes \\ /7

binaryl6alt based divide and square-
root operators.

* Only 1 rounding mode i.e., truncation \ \/ /7//

2x binaryl6alt modules

— SIMD

is used for FP operations.

4x binary8 modules

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 18



SFU Vs. mSFU

SFU mSFU
* 1x IEEE-754 binary32, * 2x binarylé6alt,
2x IEEE-754 binary16, 4x binary8
2x binaryle6alt,
4x binary8
* 5 rounding mode * 1 rounding mode
* Truncation
* 15 Operators * 7 Operators
 f add, f sub, f mul, f div, f sqrt,
* Total cell area: 81,306 pm? J_LT, _abs
* Total cell area: 3,335 pm?
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TRANSPIRE: Compilation Flow

* The compilation flow exploits the
GCC front-end to get the
intermediate representation of the
application code.

* TRANSPIRE is modeled as a bipartite i

Changes?

FAIL

B Scheduling &

directed graph with operator and
register nodes.

Placement
* The homomorphism between

NO
Transformation
Pruning .
TRANSPIRE model and DFG makes START g’

the mapping of CDFG onto END
TRANSPIRE a SUb'graph finding Last DFG? Assembly code
problem.

Reference: S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini. Efficient mapping of
cdfg onto coarse-grained reconfigurable array architectures. In ASP-DAC 2017, 2017.
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TRANSPIRE: Compiler

* Previous version of compiler
supported operations with
single cycle latency only.

* Code modification is required
for identification of FP
operations.

* It took only few hours to re-
write all of the kernels used in
this paper.
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Original Code

int i, j, k; float a[30], b[30], c[256][40], out;
for (i=30; i>0; i--){
for (j=0; j<40; j++){
for (k=0; k<256; k++){
out = a[i] + (b[i] * c[k][i] );
b4

Modified Code (explicit SIMD)

inti, j, k; float a[15], b[15], c[256][20], out;
for (i=15; i>0; i--){
for (j=0; j<20; j++){
for (k=0; k<256; k++){
out = fadd16alt( a[i] , fmull6alt( b[i], c[k][j]) );
4
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TRANSPIRE: Static Mapping

* DFG is analyzed and multi-cycle operations

are detected. a b a b
. . . \ / Multi-cycle \ /
* Each multi-cycle operation node is then Operation
transformed by adding dummy nodes. fmul  —— iyl
* Only first node is sent for mapping and
binding. v v
* PE is locked for multi-cycle operation c
« Obtained mapping is then copied onto dummy
dummy nodes with updated it

(incremented) timestamp.

11 March 2020 Rohit Prasad / UBS, France & UniBo, Italy 22



TRANSPIRE: Compiler Challenges

* While mapping multi-cycle
operations on TRANSPIRE,
there are 2 main challenges to
address.

1. All consecutive multi-cycle
operations should be
mapped onto the same PE.

2. Impose minimum restriction
on the algorithm in terms of
resource availability.

inti, j, k; float a[15], b[15], c[256][20], out;
for (i=15; i>0; i--){
for (j=0; j<20; j++){
for (k=0; k<256; k++){
out = fadd16alt( a[i] , fmull6alt( b[i], c[k][i]) );
4

Cycle #1

L™ i l
Cycle #2 I-'b fmul qJ load PE 00
1

I
S | PE
Cycle #3 | Qummy
2 | 0 I
I - |
| iy W
Cycle #4 > fadd 1|—
|
— ¥
. = ' dummy
) # ‘
Cycle #5 1 et
v — Data dependency
Cycle #
Cyele #6 store <+—— —» Mapping
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TRANSPIRE: Compiler Challenge #1

° A" consecutive multi_cycle int i, j, k; float a[15], b[15], c[256][20], out;
operations should be mapped for (i=15; 1>0; i--N
onto the same PE, to eliminate for (=0; j<20; j++){
the chances of undesirable MOVE for (k=0; k<256; k++){
Qpe rations. out = fadd16alt( a[i] , fmull6alt( b[i], c[k][i]) );
. W
Solution:

* Carefully removing unwanted
nodes between 2 consecutive
multi-cycle operations which Cyele #2
might cause MOVE operations.

» Updating the algorithm for
resource availability after a PE has Cyele #4
been locked for performing multi-
cycle operation.

Cycle #1

Cycle #3

Cycle #5

2 —» Data dependency
store <+— — Mapping

Cycle #6
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TRANSPIRE: Compiler Challenge #2

° Impose minimum restriction on inti, j, k; float a[15], b[15], c[256][20], out;
the algorithm in terms of resource ~ for (=15 >0 -
availability (i.e., minimizing data for (j=0; j<20; j++}
routing by mapping nodes which for (k=0; k<256; k++{
share data onto adjacent PEs). out = fadd16alt( a[i] , fmul16alt( bi] , c[KI[i] ) );
. m
Solution:
* Immediately unlock that PE for S~
mapping of the next operation,
without consuming any extra Cyele #2
cycles. o
yele 73
* If not done then, next FP j
operations is mapped onto other Cyele #4

tile resulting in extra MOVE
operations or decreasedPE @ YT @
utlllzatlon. Cyclc . I i —» Data dependency

store <+— — Mapping

Cycle #5
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* Experiments & Results
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Experiments: Kernels

* These applications implement the fundamental algorithms used in two domains
relevant for ultra-low-power systems, near-sensor computing and embedded
machine learning.

Kernel Operations Executed Highest loop iteration Input Data size (bits)

’—mean_covariance 397,348 47,104 94,208
P Householder 35,632 1,360 9,216
C =< Accumulate 106,298 1,240 8,704
A Diagonalize 74,987 2,368 9,216

- PC 168,738 11,776 102,400

CONV 766,728 4,096 131,072

DWT 39,456 448 16,384

SVM 15,630 896 72,000
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Accuracy Performance

* Accuracy Deviation is always less than 10% w.r.t. IEEE-754 FP formats.

Kernel Average Deviation (%) Data-type
mean_covariance 4.80 binaryl6alt
Householder 0.33 binaryl6alt
Accumulate 9.03 binaryl6alt
Diagonalize 5.49 binaryl6alt
PC 1.54 binaryl6alt

CONV 2.32 binary8

DWT 6.98 binary8

SVM 7.11 binary8
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Experimental Setup

* All experiments have been performed on a post-synthesis
netlist.

* 28nm UTBB - FDSOI process node
* 50 MHz frequency, 0.6V operating voltage

* Worst-case analysis corner ( slow NMOS, slow PMOS, 125°C,
low power low Vt transistors )
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Area Results: PE, mSFU, and DS

MSFU+DS is 1.42x smaller than FPU+DS mMSFU+DS takes 13% of PE’s total cell

5000 others\area mSFU
= DS = mSFU 4% 9% B)/S
0
&~ 4000 ~ =FPU CRF+FAGU
& 2000 e 41% ALU
=. _g 1031 1x binaryl6alt 8%
N <
o ~
S 2000 g
= Lil 2x binaryl6alt
< 1000 = 2304 4x binary8
IRF
0 RRF A 28%
IEEE FPU+DS MSFU+DS 6%

. IEEE-754 binary32 FP Unit . Divide-Square_root Unit Area breakdown of sing|e PE
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Area Comparison

* TRANSPIRE’s area overhead is 1.25x only w.r.t. RISCY_SFU

TRANSPIRE Architecture presented in this paper

TRANSPIRE_FPU TRANSPIRE featuring IEEE FPU
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TRANSPIRE (um2) | RISCY_SFU (um2) || TRANSPIRE_FPU (um2) | RISCY_FPU (um?)
DMA Controller 593 593
Interconnect 6,273 + 4KiB 6,273 + 4KiB
Context Memory 9,345 | Instruction Cache 9,345 | Instruction Cache
TCDM 65,164 64,164
PE Array 186,407 174,230
Total Cell Area 267,784 213,371 255,605 185,812

RISCY SFU RISC-V based CPU featuring SFU

Rohit Prasad / UBS, France & UniBo, Italy

RI5CY_FPU RISC-V based CPU featuring IEEE FPU
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Performance Results

* TRANSPIRE achieves up to 10.06x better performance w.r.t. RISCY_SFU

800

= TRANSPIRE (binary16alt) = RISCY_SFU (binary16alt) Kernel TRANSPIRE RISCY SFU
g TRANSPIRE_FPU (binary32) = RISCY_FPU (binary32) (binary8) | (binary8)
§ 600 (cycles) (cycles)
:.% 500 CONV 268,179 1 455,097
)
(3]
2400 DWT 11,140 16,912
O
SVM 11,408 114,747

200
100 I I I
N B Il B
PC

mean_cov | householder| accumulate | diagonalize
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Energy Results

* Energy consumption of TRANSPIRE is up to 12.91x less w.r.t. RI5CY_SFU

° s TRANSPIRE (binary16alt) = RISCY_SFU (binaryl6alt) Kernel T'Z‘.\NSP'SRE R';_CY_S;U
! TRANSPIRE_FPU (binary32) RI5CY_FPU (binary32) ( ':‘:J’)V ) | "(1:3’ )
6
™ CONV 3.036 21.506
=5
>4 DWT 0.124 0.256
|-
c® SVM 0.123 1.588
L

N

(BN

mean_cov |householder | accumulate | diagonalize PC

o
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Energy-efficiency Results

* TRANSPIRE reaches a maximum of 224 MOPS/mW
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250
224 = TRANSPIRE = RI5CY_SFU
= TRANSPIRE_FPU RI5SCY_FPU

200 189 185

>0 24

mean_cov  householder accumulate diagonalize PC

Energy Efficiency (MOPS/mW)

o
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e Conclusion
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Conclusion

* Exploit a static mapping approach to natively support FP
operations in CGRA together with transprecision computing to
maintain energy consumption in ultra-low power domain.

* TRANSPIRE achieves a maximum of 10.06x performance gain
w.r.t RISCY_SFU

* TRANSPIRE consumes up to 12.91x less energy w.r.t RI5SCY_SFU
* Area overhead is 1.25x only w.r.t RISCY_SFU
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THANK YOU
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