

A Microcontroller is All You Need: Enabling Transformer Execution on Low-Power IoT Endnodes

Alessio Burello, **Moritz Scherer**, Marcello Zanghieri, Francesco Conti, Luca Benini PhD Student, ETH Zürich 23.08.2021, IEEE COINS

TinyML and its importance in the IoT

- Artificial Intelligence on the edge is pervasive
 - Over 75 Billion end devices by 2025^[1]
 - Extracting information on the edge improves privacy and security
 - Only sending relevant results lowers communication energy
- Most IoT data is sequential / time-series and time critical
 - Video
 - Accelerometer
 - Audio
 - RADAR / LIDAR

• Most of this data lends itself very well to Deep Learning algorithms, CNNs especially

[1]: https://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10?r=US&IR=T

Neural Networks on Microcontrollers

- There is a significant body of literature on employing CNNs on the edge^[2,3]
 - Need quantization to reduce compute and memory, typically 8 Bit
 - Most frameworks are still in their infancy
 - Data marshalling operations are costly
- Most frameworks 'blindly' implement a computational graph
 - Little checking for optimization potential
 - There is a large performance gap, even between identical networks
 - Very limited support for 'exotic' operators

CNNs are generally well supported, but there is lots of potential for optimization

[2]: David et al.: "Tensorflow Lite Micro: Embedded Machine Learning on TinyML Systems"[3]: Lai et al.: "CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs"

The Transformer Architecture

- Transformers are originally designed for language modelling
 - Inputs are 2D-Tensors of dimensions S(equence)xE(mbedding)
 - Multi-Head Attention relates all inputs globally
- Transformers perform well on many problems
 - Computer Vision^[4]
 - Most accurate network on ImageNet is a Transformer^[5]
 - Audio Processing^[6]
 - And many more!^[7,8]

• Multi-Head (Self-)Attention is the key innovation in Transformers

[4]: Dosovitsky et al.: "An Image Is Worth 16x16 Words: Transformers for Image Recognition At Scale"

- [5]: Zhai et al.: "Scaling Vision Transformers"
- [6]: Gong et al.: "AST: Audio Spectrogram Transformer"

[7]: Chen et al.: "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation"

[8]: Strudel et al.: "Segmenter: Transformer for Semantic Segmentation"

Recognition At Scale"

Transformer Encoder

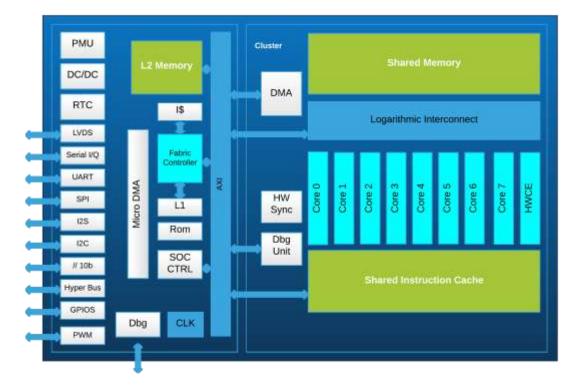
MLP

Norm

Lx

PULP & GAP8

- GAP 8 is a microcontroller based on the open-source PULP-Open^[9] system
 - PULP-Open is a project of ETH Zurich and University of Bologna
- GAP 8 features 8 32 Bit RISC-V cores (RI5CY) with specialized DSP-ISA extensions
 - 1 RI5CY Fabric Controller core
 - 512 kB L2 SRAM memory
 - 64 kB L1 low-latency cluster SRAM memory
 - Hardware Loops
- Support for 8 Bit SIMD
 - Sum-Dot-Product instructions
 - Vector Shuffle instructions
 - And many more

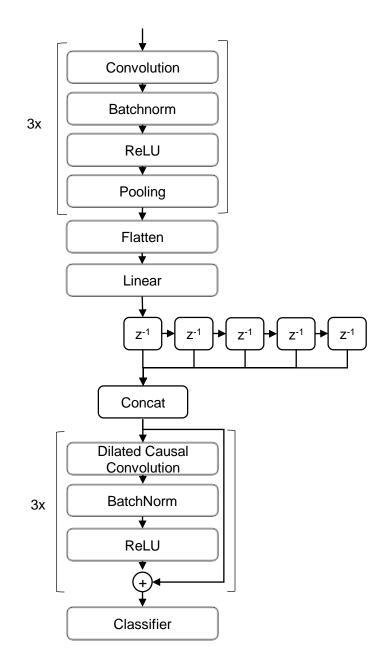


[9]:https://github.com/pulp-platform

TinyRadarNN Network

- Network predicts gesture from short range radar data
 - Input data consists of sequential samples from radar
- Network consists of CNN frontend + TCN backend^[11]
 - Each 2D sample is fed to a CNN for feature extraction
 - 5 feature vectors at a time are fed into TCN for final prediction
- 8 Bit weights & feature maps
- 73.66% LOOCV Accuracy
- 91 kB Model size

ETHzürich



[10]: Available at: https://tinyradar.ethz.ch/

[11]: Scherer et al.: "TinyRadarNN: Combining Spatial and Temporal Convolutional Neural Networks for Embedded Gesture Recognition with Short Range Radars"

How can we enable efficient execution of transformers on microcontrollers?

- Novel transformer-based network for TinyRadarNN dataset
- Full 8 Bit integerization pipeline for transformer networks
- Optimize kernels to avoid data marshalling operations in self-attention
- Benchmark kernels and network on GAP8 and ARM Cortex-M devices

Network Design

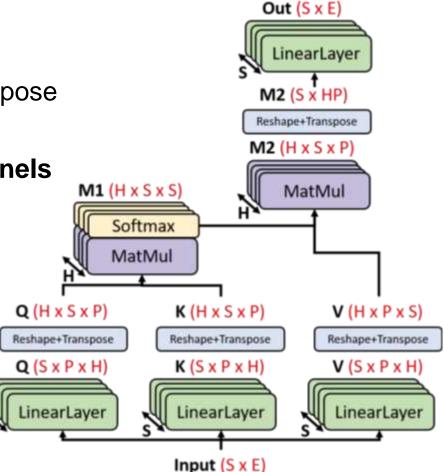
- Replaced dense convolutions by depthwise-separable convolutions
 - Reduce number of parameters in frontend
- Subsampled input vectors by 2x to reduce computations
- Replaced TCN by Transformer Encoder
 - 6 layers
 - Same embedding dimension
- 8 Bit weights & feature maps
- 77.15% LOOCV Accuracy
 - 3.5% increase in accuracy
- 263 kB model size

Multi-Head Self-Attention

- Self-Attention uses Matrix Multiplications + Transposition
 - Many different data formates required -> Reshape + Transpose
 - Data marshalling is costly
 - Merge multiplication + transposition in specialized kernels
- Self-Attention uses Softmax activation
 - Calculcating exponentials in full precision is expensive
 - Use polynomial approximation as in I-BERT^[12]

$$exp(x_i) \approx a \times (x_i + b)^2 + c$$

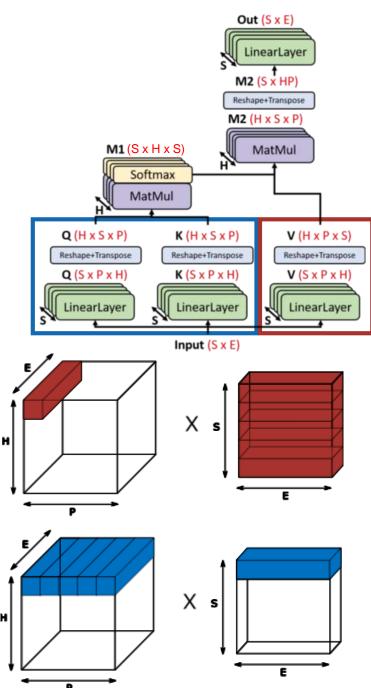
Softmax $(x)_i = \frac{exp(x_i)}{\sum_{i=1}^{N} exp(x_i)}$



[12]: Kim et al.: "I-BERT: Integer-only BERT Quantization"

Self-Attention – Initial Projection

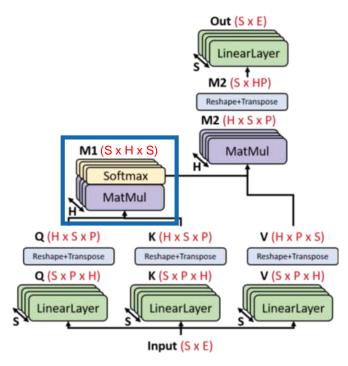
- Input-Reuse Linear Kernel for H x S x P output layout
 - Use ExP weights first, then traverse sequence
 - Outputs in H -> P -> S order
 - Parallelize over Head dimension
- Weight-Reuse Linear Kernel for H x P x S output layout
 - Use all inputs first, then traverse weights
 - Outputs in H -> S -> P order
 - Parallelize over Head dimension
- All accesses are contiguous

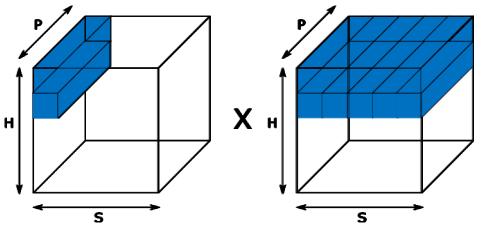


26.08.202110

Self-Attention – MatMul + Softmax

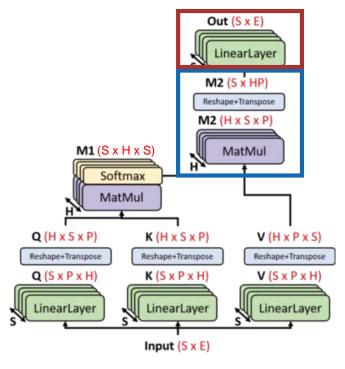
- The softmax matmul Q x K^T produces data in S x H x S format
 - Access Q in S -> H -> P order
 - Non-sequential accesses but regular stride
 - Access K in H > S -> P order
 - Parallelize over Head dimension
- Softmax is calculated over the last dimension
 - Exponential function is approximated with polynomial
 - Exponentiation can be merged into matmul kernel
- Kernel fully avoids explicit transpose / reshape operations!

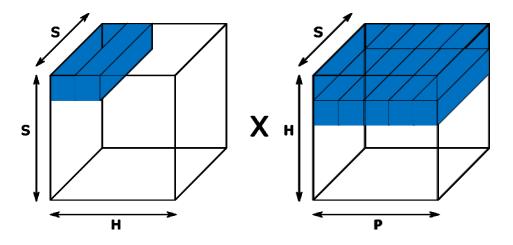




Self-Attention – Attention Matmul & Final Projection

- The Attention Matmul is standard
 - M1 is accessed in sequential S -> H -> S order
 - V is accessed in sequential H -> P -> S order
 - H and P dimensions are collated implicitly
 - Parallelize over Head dimension
- The Final Projection layer is a standard Linear layer
 - Use any well-optimized implementation like CMSIS-NN / PULP-NN
 - Parallelize over output Embedding dimension





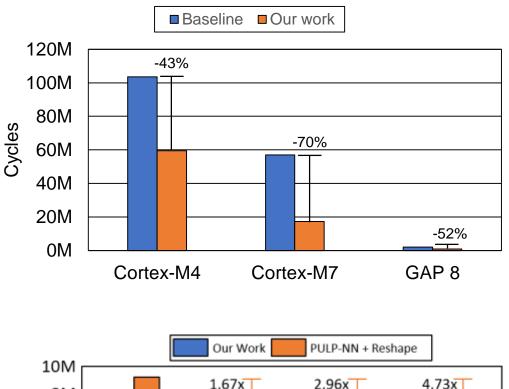
Experimental setup

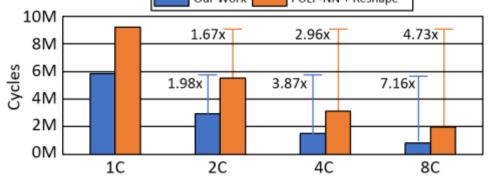
- Implemented 8 Bit attention kernels on three platforms
 - GAP 8 (RV32IMC + XPulpv2)
 - STM32H7 (Cortex-M7)
 - STM32L4 (Cortex-M4)
- Self-attention benchmarks for the following parameters:
 - H = 16
 - P = 64
 - S = 32
 - E = 64
- Benchmarked the full network on all three devices
 - Our solution, PULP-NN^[13] and CMSIS-NN^[14]

[13]: Garofalo et al.: "PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power RISC-V Processors" [14]: Lai et al.: "CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs"

Attention Results

- Large single-core speedup across all platforms
 - Cortex-M4: 1.75x
 - Cortex-M7: 3.35x
 - GAP 8: 2.1x
- Close-to-optimal speedup on multiple cores
 - 7.16x for 8 cores
 - Parallelization over head dimension
- Comparable efficiency to convolutions
 - Our attention layer: 11.29 MAC/cycle
 - PULP-NN Convolutions: 12.86 MAC/cycle
- No data marshalling in Attention layers!





Network Results

- All network performance numbers are improved by large margins
 - Accuracy, Operations, Latency & Energy
- Only increase in model size
 - Still fits in 512 kB L2 memory

	Original		Our Network
Accuracy	73.66%	↑ 3.5%	77.15%
Model size	93 kB	↑ 3x	263 kB
Operations	42 MMACs	↓ 14x	3 MMACs
Latency	58 ms	↓ 6.3x	9.24 ms
Energy	4.52 mJ	↓ 9.6x	0.47 mJ

Conclusion

- Our kernel library allows to extract performance similar to convolutional layers from Attention
 - No explicit reshaping or transposition operations
- Parallelizing over the head dimension allows for optimal scaling
 - 1.5x better than conventionally optimized library
- Network backend size is increased, frontend size is decreased
 - Transformer significantly increases accuracy
- While transformer layers pack a lot of parameters, computations are reduced
 - 9.6x improvement in inference energy over original implementation, one order of magnitude
 - All performance metrics are fully dominated

ETH zürich

Moritz Scherer PhD Student, ETH Zürich scheremo@iis.ee.ethz.ch

ETH Zürich Integrated Systems Lab ETZ J 69.2 Gloriastrasse 35 8092 Zürich