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A Very Short Review on CMOS power 
(and power minimization)
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Summary of Power Dissipation Sources

� α – switching activity

� CL – load capacitance

� Vswing – voltage swing

� f – frequency

( ) ( ) DDLeakDCDDswingL VIIfVVCP ⋅++⋅⋅⋅⋅α~

� IDC – static current

� Ileak – leakage current
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The Traditional Design Philosophy

� Maximum performance is primary goal

� Minimum delay at circuit level

� Architecture implements the required function with target 

throughput, latency

� Performance achieved through optimum sizing, logic 

mapping, architectural transformations.

� Supplies, thresholds set to achieve maximum performance, 

subject to reliability constraints
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The New Design Philosophy

� Maximum performance (in terms of propagation delay) is too 

power-hungry, and/or not even practically achievable

� Many (if not most) applications either can tolerate larger 

latency, or can live with lower than maximum clock-speeds

� Excess performance (as offered by technology) to be used 

for energy/power reduction

Trading off speed for power
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In energy-constrained world, design is trade-off process

♦ Minimize energy for a given performance requirement

♦ Maximize performance for given energy budget

Delay

Unoptimized 
design

DmaxDmin

Energy

Emin

Emax

Exploring the Energy-Delay Space

Pareto-optimal

designs
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Reducing power @ all design levels

� Algorithmic level

� Compiler level

� Architecture level

� Micro-Architecture

� Circuit level

� Silicon level

� Important concepts:

� Lower Vdd and freq. (even if errors occur) / 

dynamically adapt Vdd and freq.

� Reduce circuit

� Exploit locality

� Reduce switching activity, glitches, etc.
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Algorithmic level

� The best indicator for energy is …..

…. the number of cycles

� Try alternative algorithms with lower complexity

� E.g. quick-sort, O(n log n) ⇔ bubble-sort, O (n2)

� … but be aware of the 'constant' : O(n log n) ⇒ c*(n log n)

� Heuristic approach

� Go for a good solution, not the best !!

Biggest gains at this level !!
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Compiler level

� Source-to-Source transformations

� loop trafo's to improve locality

� Strength reduction

� E.g. replace Const * A with Add's and Shift's

� Replace Floating point with Fixed point

� Reduce register pressure / number of accesses to register file

� Use software bypassing

� Scenarios: current workloads are highly dynamic

� Determine and predict execution modes 

� Group execution modes into scenarios

� Perform special optimizations per scenario
� DFVS: Dynamic Voltage and Frequency Scaling

� More advanced loop optimizations

� Reorder instructions to reduce bit-transistions
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Architecture level

� Going parallel

� Going heterogeneous 

� tune your architecture, exploit SFUs (special function units)

� trade-off between flexibility / programmability / genericity and efficiency

� Add local memories

� prefer scratchpad i.s.o. cache

� Cluster FUs and register files (see next slide)

� Reduce bit-width

� sub-word parallelism (SIMD)
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Organization (micro-arch.) level

� Enabling Vdd reduction

� Pipelining 

� cheap way of parallelism

� Enabling lower freq. ⇒ lower Vdd

� Note 1: don't pipeline if you don't need the performance

� Note 2: don't exaggerate (like the 31-stage Pentium 4)

� Reduce register traffic

� avoid unnecessary reads and write

� make bypass registers visible
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Circuit level

� Clock gating

� Power gating

� Multiple Vdd modes

� Reduce glitches: balancing digital path's

� Exploit Zeros

� Special SRAM cells

� normal SRAM can not scale below Vdd = 0.7 - 0.8 Volt

� Razor method; replay

� Allow errors and add redundancy to architectural invisible structures

� branch predictor

� caches

� .. and many more ..
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Silicon level

� Higher Vt (V_threshold)

� Back Biasing control
� see thesis Maurice Meijer (2011)

� SOI (Silicon on Insulator)
� silicon junction is above an electr. insulator 

(silicon dioxide)
� lowers parasitic device capacitance

� Better transistors: Finfet
� multi-gate
� reduce leakage (off-state curent)

� .. and many more
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Near-Sensor Processing
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Computing fot the Internet of Things

Battery + Harvesting powered
� a few mW  power envelope

Long range, low BW

Short range, medium BW

Low rate (periodic) data

SW update, commands

Transmit

Idle: ~1µW
Active: ~ 50mW

Analyze and Classify

µController

IOs

1 ÷ 25 MOPS
1 ÷ 10 mW

e.g. CortexM

Sense

MEMS IMU

MEMS Microphone

ULP Imager

100 µW ÷ 2 mW

EMG/ECG/EIT

L2 Memory

1 ÷ 2000 MOPS
1 ÷ 10 mW

1 ÷ 25 MOPS
1 ÷ 10 mW
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Near-Sensor Processing

� Image

� Voice/Sound

� Inertial

� Biometrics

Extremely compact output (single index, alarm, signature)

Computational power of ULP µControllers is not enough

Tracking:

Speech:

Kalman:

SVM:

80 Kbps

INPUT 
BANDWIDTH

COMPUTATIONAL
DEMAND

OUTPUT 
BANDWIDTH

1.34 GOPS 0.16 Kbps

256 Kbps 100 MOPS 0.02 Kbps

2.4 Kbps 7.7 MOPS 0.02 Kbps

16 Kbps 150 MOPS 0.08 Kbps

[*Nilsson2014]

[*Benatti2014]

[*Lagroce2014] 

[*VoiceControl]

Parallel worloads

COMPRESSION 
FACTOR

500x

12800x

120x

200x
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PULP: pJ/op Parallel ULP computing

Parallel + Programmable + Heterogeneous ULP computing
1mW-10mW active power

Compiler Infrastructure

Processor & Hardware IPs

Virtualization Layer

Programming Model

Low-Power Silicon Technology
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Parallel Ultra Low Power
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Near-Threshold Computing (NTC):

� Don’t waste energy pushing devices in strong inversion

� Recover performance with parallel execution

� Aggressively manage idle power (switching, leakage)

� Manage Process and temperature variations in NT

06.09.2019Davide Rossi 19

Minimum Energy Operation
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Parallel NTC

High Workloads

*Measured on our first prototype 

[DoganICSDPTMO20
11]

SUB-Vth NEAR-Vth

C
o

re
 P

o
w
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r 

[m
W

]

Workload [MOPS]

Target Workload
[MOPS]

1-Core Energy Efficiency
(ideal) [MOPS/mW]

4-Cores Energy Efficiency
(ideal) [MOPS/mW]

Ratio

100 43 55 1.3x

200 33 50 1.5x

400 18 43 2.4x

Low Workloads
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Parallel NTC + Race to Halt

SINGLE-CORE @ MAX FREQUENCY (e.g. 200MHz)

MULTI-CORE @ MAX FREQUENCY (e.g. 200 MHz)

Power

Power

system power

core power

active period

active period

system power

core power

Low Workload
(duty cycled)

� Going faster allows to integrate system power over a smaller period

� The main constraint here is the power envelope

saved energy

Low Workload
(duty cycled)

Ideally same energy of single-core solution

Deep sleep
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Building PULP
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DEMUX

L1 TCDMMB0 MBM-1

. . . . .

Building PULP

4-stage, in-order 

OpenRISC core

I$0 I$N-1

Private per-core instruction cache 

SIMD + MIMD + sequential

1 Cycle Shared Multi-Banked L1 Data Memory + Low Latency Interconnect

� Near Threshold but parallel � Maximum Energy efficiency when Active

� + strong power management for (partial) idleness

PE0 PEN-1

DMA

Tightly Coupled DMA

Periph

+ExtM

2 ..16 Cores 

LOW LATENCY INTERCONNECT

“GPU like” shared memory � low overhead data sharing

Double buffering

D. Rossi et al., «PULP: A Parallel Ultra Low Power Platform for 
Next Generation IoT Applications," in HOT CHIPS 2015.
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Near threshold FDSOI technology

Body bias: Highly effective knob for power & variability management!
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Near Threshold + Body Biasing Combined

But even with aggressive RBB leakage is not zero!

State retentive (no state retentive registers and memories)

Ultra-fast transitions (tens of ns depending on n-well area to bias)

Low area overhead for isolation (3µm spacing for deep n-well isolation)

Thin grids for voltage distribution (small transient current for wells polarization)

Simple circuits for on-chip VBB generation (e.g. charge pump)

FBB vs. FREQUENCY

+ 2.5x 
@0.5V

- 10x 
@0.5V

RBB vs. LEAKAGE

RVT transistors
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Selective, Fine Grained Body Biasing

� The cluster is partitioned in separate 

clock gating and body bias regions

� Body bias multiplexers (BBMUXes) 
control the well voltages of each region

� A Power Management Unit (PMU) 
automatically manages transitions 

between the operating modes

� Power modes of each region:

� Boost mode:    active + FBB

� Normal mode:  active + NO BB

� Idle mode: clock gated + NO BB (in LVT) 

RBB (in RVT)

D. Rossi et. al., «A 60 GOPS/W, −1.8V to 0.9V body bias ULP 
cluster in 28nm UTBB FD-SOI technology», 

in Solid-State Electronics, 2016. 
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PULPv1 

CHIP FEATURES

Technology 28nm FDSOI (RVT)

Chip Area 3mm2

# Cores 4xOpenRISC

I$ 4x1kbyte (private)

TCDM 16 kbyte

L2 16 kbyte

BB regions 6

VDD range 0.45V-1.2V (SRAM: 0.55V-1.2V)

VBB range -1.8V - +0.9V

Perf. Range 1 MOPS-1.9GOPS

Power Range 100 µW-127 mW

Peak Efficiency 60 GOPS/W@20 MOPS, 0.55V

PULPv1 issues:

1) World record energy efficiency (60 MOPS/mW), but @ too small performance (20 MOPS)

2) SRAM limits voltage scalability (very well known problem…)

D. Rossi et. al., «A 60 GOPS/W, −1.8V to 0.9V body bias ULP 
cluster in 28nm UTBB FD-SOI technology», 

in Solid-State Electronics, 2016. 
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The Memory bottleneck

PULPv1 POWER BREAKDOWN @ BEST ENERGY POINT:

PULPv1 issues:

1) World record energy efficiency (60 MOPS/mW), but @ too small performance (20 MOPS)

2) SRAM limits voltage scalability (very well known problem…)

3) SRAM forms a huge bottleneck for energy efficiency (>60% of total power)



|| 06.09.2019Davide Rossi 29

ULP (NT) Bottleneck: Memory

� “Standard” 6T SRAMs:

� High VDDMIN

� Bottleneck for energy efficiency 

� >50% of energy can go here!!!

� Near-Threshold SRAMs (8T)

� Lower VDDMIN

� Area/timing overhead (25%-50%)

� High active energy

� Low technology portability

� Standard Cell Memories:

� Wide supply voltage range

� Lower read/write energy (2x - 4x)

� High technology portability

� Major area overhead 4x � 2.7x with 

controlled placement

2x-4x

256x32 6T SRAMS vs. SCM

A. Teman et.al., ‘Power, Area, and Performance Optimization of 
Standard Cell Memory Arrays Through Controlled Placement’, 

in ACM TDAES, May 2016
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PULPv2

CHIP FEATURES

Technology 28nm FDSOI (LVT)

Chip Area 3mm2

# Cores 4xOpenRISC

I$ (SCM) 4x1kbyte (private)

TCDM 32 + 8 Kbyte

L2 64 kbyte

BB regions 10

VDD range 0.3-1.2V (0.5-1.2V)

VBB range 0V-2V

Perf. Range 1 MOPS - 4 GOPS

Power Range 10µW - 300 mW

Peak Efficiency 192 GOPS/W@0.5V

D. Rossi et al., "Energy-Efficient Near-Threshold Parallel
Computing: The PULPv2 Cluster," in IEEE Micro, Sep./Oct. 2017.
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I$: a Look Into ‘Real Life’ Applications

Applications on PULP

SHORT JUMP LOOP 
BASED APPLICATIONS

LONG JUMP APPLICATIONS

LIBRARY BASED
Issues:

1) Area Overhead of SCMs (4Kb/core not affordable….)

2) Capacity miss (with small caches)

3) Jumps due to runtime (e.g. OpenMP, OpenCL) and other function calls

Exixting ULP processors Latch based I$ 

REISC (ESSCIRC2011) 64b

Sleepwalker (ISSCC 2012) 128b

Bellevue (ISCAS 2014) 128b

Survey of State of The Art

SCM-BASED I$ IMPROVES EFFICIENCY BY ~2X ON SMALL BENCHMARKS, 

BUTG
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OpenMP for PULP
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{     

#pragma omp parallel

Task_A ();

}

#pragma omp section

{     

#pragma omp parallel

Task_B ();

}

#pragma omp section

{    

#pragma omp parallel

Task_C ();

}

#pragma omp section

{

#pragma omp parallel

Task_D ();

}               

}

}

A.

C

EG

A

EE

B

EF

D

EH

C

EG

A

EE

B

EF

D

EH

B.

C.

D.

� OpenMP on PULP:

� Lightweight implementation on top of a 

bare-metal runtime (custom GCC libgomp)

� A subset of OpenMP 3.0 supported (e.g. 

no tasking)

� Power management embedded in the 

runtime (transparent to the end-user)

� Architectural Implications

� #pragmas are translated into runtime 

function calls

� Function calls cause I$ cache pollution

� Call to OpenMP functions feature 
intrinsic overhead

A. Marongiu et. al., "An OpenMP Compiler for Efficient Use of 
Distributed Scratchpad Memory in MPSoCs," in IEEE 

Transactions on Computers, Feb. 2012.
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The Solution: Shared I$

I. Loi, et.al., "The Quest for Energy-Efficient I$ Design in Ultra-
Low-Power Clustered Many-Cores," in IEEE Transactions on 

Multi-Scale Computing Systems, In Press.

� Share instruction cache

� OK for data parallel execution model

� Not OK for task parallel execution model, or very 

divergent parallel threads

� Architectures

� SP: single-port banks connected through a read-

only interconnect

� Pros: Low area overhead

� Cons: Timing pressure, contention

� MP: Multi-ported banks

� Pros: High efficiency

� Cons: Area overhead (several ports)

� Hierarchical Cache:

� Pros: P&R friendly

� Cons: Slightly slower than the others.

Private I$ (traditional)

Shared Single-Port I$
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The Solution: Shared I$

I. Loi, et.al., "The Quest for Energy-Efficient I$ Design in Ultra-
Low-Power Clustered Many-Cores," in IEEE Transactions on 

Multi-Scale Computing Systems, In Press.

� MP: Multi-ported banks

� Pros: High efficiency

� Cons: Area overhead (several ports)

Hierarchitcal Shared I$
Multi-Port Shared I$

� Hierarchical Cache:

� Pros: P&R friendly

� Cons: Slightly slower than the others.
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Synthetic Benchmarks
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I. Loi, et.al., "The Quest for Energy-Efficient I$ Design in Ultra-
Low-Power Clustered Many-Cores," in IEEE Transactions on 

Multi-Scale Computing Systems, In Press.
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Real-Life Applications
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I. Loi, et.al., "The Quest for Energy-Efficient I$ Design in Ultra-
Low-Power Clustered Many-Cores," in IEEE Transactions on 

Multi-Scale Computing Systems, In Press.
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HW Synchronizer: Impact on OpenMP primitives
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� Cost of OpenMP runtime reduced by more than one order of magnitude 

� Better scalability with number of cores
F. Glaser, et. al., "Hardware-Accelerated Energy-Efficient 
Synchronization and Communication for Ultra-Low-Power Tightly 
Coupled Clusters," DATE 2019.
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<32-bit precision � SIMD2/4 opportunity
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Extending RISC-V for NSP

Small Power and Area overhead

RISC-V � V1

V2

V3

HW loops

Post modified Load/Store

Mac

SIMD 2/4 + DotProduct + Shuffling

Bit manipulation unit

Lightweight fixed point

V2

V3

Baseline RISC-V RV32IMCV1

M. Gautschi et al., "Near-Threshold RISC-V Core With DSP Extensions 
for Scalable IoT Endpoint Devices," in IEEE TVLSI, Oct. 2017.
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ISA Extensions improve performance

for (i = 0; i < 100; i++) 
d[i] = a[i] + b[i];

for (i = 0; i < 100; i++) 
d[i] = a[i] + b[i];

mv   x5, 0
mv   x4, 100
Lstart: 
lb x2, 0(x10)
lb x3, 0(x11)
addi x10,x10, 1
addi x11,x11, 1
add   x2, x3, x2
sb x2, 0(x12)
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5, Lstart

mv   x5, 0
mv   x4, 100
Lstart: 
lb x2, 0(x10)
lb x3, 0(x11)
addi x10,x10, 1
addi x11,x11, 1
add   x2, x3, x2
sb x2, 0(x12)
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5, Lstart

Baseline

( ( * - * . / 0 1 2 3 4 5 3 4

mv   x5, 0
mv   x4, 100
Lstart: 
lb x2, 0(x10!)
lb x3, 0(x11!)
addi x4, x4, -1
add  x2, x3, x2
sb x2, 0(x12!)

bne x4, x5, Lstart

mv   x5, 0
mv   x4, 100
Lstart: 
lb x2, 0(x10!)
lb x3, 0(x11!)
addi x4, x4, -1
add  x2, x3, x2
sb x2, 0(x12!)

bne x4, x5, Lstart

6 * - * . / 0 1 2 3 4 5 3 4

Auto-incr load/store

lp.setupi 100, Lend
lb x2, 0(x10!)
lb x3, 0(x11!)
add  x2, x3, x2

Lend:  sb x2, 0(x12!)

lp.setupi 100, Lend
lb x2, 0(x10!)
lb x3, 0(x11!)
add  x2, x3, x2

Lend:  sb x2, 0(x12!)

HW Loop

7 * - * . / 0 1 2 3 4 5 3 4

lp.setupi 25, Lend
lw x2, 0(x10!)
lw x3, 0(x11!)
pv.add.b x2, x3, x2

Lend: sw x2, 0(x12!)

lp.setupi 25, Lend
lw x2, 0(x10!)
lw x3, 0(x11!)
pv.add.b x2, x3, x2

Lend: sw x2, 0(x12!)

Packed-SIMD

( 8 9 7 * - * . / 0 1 2 3 4 5 3 4
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What About FP?

� The adoption of floating point formats 

requiring a lower number of bits 

(smallFloats) can reduce execution time and 

energy consumption

� Simpler Logic (smaller pj/op)

� Vectorization (smaller execution time)

� SW support:

� flexFloat library for emulation of smallFloat

format

� Automatic exploration tool to tune precision of 

individual FP operations for the required 

application accuracy

� Hardware support:

� smallFloat scalar and vector operations

� Casting operations to move data through 

different FP types

Tagliavini et. A.l, «A Transprecision Floating-Point Platform
for Ultra-Low Power Computing», DATE 2018
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Process & Temperature Variations in NTC

100x
@0.5V

120°C

-40°C25 MHz ± 7 MHz (3σ)

Thermal inversionProcess variation

Process variation over a 
distribution of 60 chips @ 0.6V

Normalized Frequency

Voltage

0.5V 0.8V
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Body Bias-Based Performance Monitoring and Control

Goal:

� Compensate the effects of external

factors like ambient temperature

� Reduce PVT Margings at design time

� Improve Energy Efficiency

� Mixed Hardware/Software control loop exploiting

on-chip frequency measurement (PMB)

D. Rossi et al., "A Self-Aware Architecture for PVT Compensation 
and Power Nap in Near Threshold Processors,"  

in IEEE Design & Test, Dec. 2017.
Davide Rossi
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Dynamic PVT Compensation
�PULPv3 board featuring voltage regulator (down to 0.5V)

�Peltier element to heat-up / cool the samples

�TEC controller to drive the peltier element

�Embecosm MAGEEC Energy Monitoring Shield for power measurements

�JTAG Programmer for loading code on PULPv3

�Host laptop to show plots

>2x leakage reduction @ 70°C

Extended operating range for 

zero-margin design (i.e. signoff 

in typical corner) 

�30% energy reduction

A. Di Mauro, et. al., "Temperature and process-aware performance 
monitoring and compensation for an ULP multi-core cluster in 

28nm UTBB FD-SOI technology," PATMOS, 2017.
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A Full SoC Perspective
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Putting All together: Mr. Wolf IoT Processor

� The SoC is an advanced microcontroller 
based on an ultra-low-power 32-bit RISC-V 
processor

� 512kB of L2 Memory

� Rich set of peripherals:

� QSPI, SPI, I2C, I2S

� HyperRam + HyperFlash

� Camera Interface

� JTAG (Debug), GPIOs, PWM, ROM

� RTC, Interrupt controller

� Autonomous IO DMA Subsystem

� Advanced power management

� 2 Switchable Power Domains

� 2 low-power FLLs (IO, SoC, Cluster)

� On-chip DCDC and LDO

� State-Retentive L2 Memory

� Parallel Programmable Accelerator:

� 8x DSP enhanced RISC-V processors 

� 64kB of Shared L1 Memory

� 2x Shared Floating Point Units

� Shared latch-based Instruction Cache

� High performance DMA(L2<->L1)

� Event Unit supporting fast synchronization 

among cores
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Mr. Wolf Chip Results

Technology CMOS 40nm LP

Chip area 10 mm2

VDD range 0.8V - 1.1V

Memory Transistors 576 Kbytes

Logic Transistors 1.8 Mgates

Frequency Range 32 kHz – 450 MHz

Power Range 72 µW – 153 mW

Power Managent
(DC/DC + LDO)

VDD [V] Freq. Power

Deep Sleep 0.8 n.a. 72 µW

Ret. Deep Sleep 0.8 n.a.
76.5 - 108 

µW

SoC Active 0.8 - 1.1
32 kHz -
450 MHz 

0.97 -
38 mW

Cluster Active 0.8 - 1.1
32 kHz -
350 MHz

1.6 -
153 mW

A. Pullini, D. Rossi, I. Loi, G. Tagliavini and L. Benini, "Mr.Wolf: An Energy-Precision Scalable 
Parallel Ultra Low Power SoC for IoT Edge Processing," in IEEE Journal of Solid-State 

Circuits, vol. 54, no. 7, pp. 1970-1981, July 2019.
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Mr. Wolf XPULP Extensions Performance

up to 1.8x

up to 4x

up to 11x
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Efficient Synchronization and Power Management

HW

SYNCH

PE3PE2PE1PE0

RESULTS

ARCHITECTURE
GOALS:

� Reduce cost of parallelization

of data-parallel programming

models (OpenMP, OpenCL)

� Shut-down (clock gating) 

processors during idle periods

~15x latency and energy 
reduction for a barrier

30%-50% latency and energy 
reduction for a mutex

F. Glaser et.al. “Hardware-Accelerated Energy-Efficient Synchronization and Communication 
for Ultra-Low-Power Tightly Coupled Clusters”, DATE 2019
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Mr. Wolf Parallel Speed-up

49

Amdahl’s Limit

Speed-Up
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Mr. Wolf Computing Performance (Fixed+Float)

25.7.2018 50

35x 

On 2D Matrix Multiplication
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Mr. Wolf Computing Efficiency (Fixed+Float)

12x 

On 2D Matrix Multiplication
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Recovering Efficiency Through Flexible 
Customization 
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Recovering More Silicon Efficiency

1 > 1003 6

CPU GPGPU HW IP

GOPS/W 

Accelerator Gap

SW HWMixed

Throughput
Computing

General-purpose
Computing

1GOPS/mW

Closing The Accelerator Efficiency Gap with Agile Customization

ULP parallel
Computing
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Recovering Even More Efficiency
Fixed function accelerators have limited reuse^ how to limit proliferation?
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Learn to Accelerate

� Brain-inspired (deep convolutional networks) systems are high performers in many 

tasks over many domains

Image recognition

[RussakovskyIMAGENET2014]

Speech recognition

[HannunARXIV2014]

Flexible acceleration: learned CNN weights are “the program”

Human: 

85% (untrained), 

94.9% (trained)

CNN: 

93.4% accuracy
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PULP CNN Performance

PULPv3 ARCHITECTURE, CORNER: tt28, 25°C, VDD= 0.5V, FBB = 0.5V

PERFORMANCE ENERGY EFFICIENCY

8 GOPS 6500 GOPS/W

61x

Average performance and energy efficiency on a 32x16 CNN frame

47x
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Sub pJ/OP? Approximate Computing

0% bit flips

1% bit flips
1.84x energy improvement

1.2pJ/OP

437 GOPS/W @1.2V

803 GOPS/W @0.8V

CNNs are intrinsically resilient to 
(a small amount) of soft errors
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From Approximate to Transprecision: YodaNN1

� Approximation at the algorithmic side �Binary weights

� BinaryConnect [Courbariaux, NIPS15]

� Reduce weights from 12-bit to a binary value -1/+1

� Stochastic Gradient Descent with Binarization in the Forward Path

� Learning large networks is still an issue with binary connect…

� Ultra-optimized HW is possible!

� Power reduction because of arithmetic simplification (multipliers �Two’s complement + muxes)

� Major arithmetic density improvements

� Area can be used for more energy-efficient weight storage

� SCM memories for lower voltage � E goes with 1/V2

��,����� = 
−1 
�� = � � 							1 
� = 1 − 
�� ��,��� = 
−1 � < 01 � > 0

1After the Yedi Master from Star Wars - “Small in size but wise and powerful” cit. www.starwars.com
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Comparison sith SoA

Publication Throughput
[GOPS]

En.Eff.
[GOPS/W]

Supply
[V]

Area Effic.
[GOPS/MGE]

Neuflow 320 490 1.0 17

Leuven 102 2600 0.5 - 1.1 64

Eyeriss 84 160 0.8 - 1.2 46

NINEX 569 1800 1.2 51

k-Brain 411 1930 1.2 109

Origami 196/74 437/803 1.2/0.8 90/34

This Work* 1510/55 9800/61200 1.2/0.6 1135/41

23x

2.7x
10x

*UMC 65nm Technology, post place & route, 25°C, tt, 1.2V/0.6V

Breakthrough for ultra-low-power CNN ASIC implementation

fJ/op in sight: manufacturing in Globalfoundries 22FDX



||

From Frame-based to Event-based
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Back to System-Level

� Event-Driven Computation, which 

occurs only when relevant events are 

detected by the sensor

� Event-based sensor interface to

minimize IO energy (vs. Frame-based

inteface

� Mixed-signal event triggering with an 

ULP imager with internal processing 

AMS capability 

PULPv3

GrainCam

Mixed-Signal

Event-based

Imager

Digital

Parallel

Processor

Smart Visual Sensor� idle most of the time (nothing interesting to see)

A Neuromorphic Approach for doing nothing VERY well
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GrainCam Imager (FBK)

Pixel-level spatial-contrast extraction

Analog internal image processing 

� Contrast Extraction

� Motion Extraction, differencing two successive frames

� Background Subtraction, differencing the reference 

image, stored in the memory, with the current frame
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GrainCam Readout

Readout modes:

� IDLE:  readout the counter of asserted pixels

� ACTIVE: sending out the addresses of asserted 

pixels (address-coded representation), according 

raster scan order

Event-based sensing: output frame data bandwidth 
depends on the external context-activity

Frame-
based

{x
0

, y
0

}

{x
1

, y
1

}

{x
2

, y
2

}

{x
3

, y
3

}

{x
N-1

, y
N-1

}

Event-
based

Ultra Low Power Consumption e.g. 10-20uW @10fps
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Power Management

Graincam IDLE

PULP Deep Sleep

#events > threshold

Switch to ACTIVE

ACTIVE

Deep Sleep

10μW @10fps

7μW

READOUT

Wake-up

event

Data Trasfer

Data

event

Processing

10-20μW @10fps

2.88 mW Active Power @ 0.55V , 81MHz 

Graincam PULP

M. Rusci, et. al., "A Sub-mW IoT-Endnode for Always-On Visual 
Monitoring and Smart Triggering," in IEEE IoT Journal, 2017.
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Event-Driven Binary Deep Network

Interger Input 

Layer
Outp

ut 
Layer

Binary

Input 

Layer

Output 

Layer

Binary Neural

Network (BNN)

Event-based
Binarized
Neural
Network 

Digital Signal ProcessingMixed-Signal Sensing

Integer data

binary data 

(events)Spatial-local

filtering and 

binarization

Digital pixel 

sampling

Layers with binary inputs and binary weights

Imager

Manuele Rusci et. al. «Always-ON visual node with a hardware-
software event-based binarized neural network inference engine», 

Computing Frontiers, 2018.
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Results

300 – 800 µW

� 3 Classes:

� Pedestrians

� Bikes

� Cars

� 84.6%  vs. 81.6% Accuracy
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Outlook and Conclusion
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Conclusion

� Near-sensor processing � Energy efficiency requirements: pJ/OP and 

below

� Technology scaling alone is not doing the job for us

� Ultra-low power architecture and circuits are needed

� CNNs-based visual functions can be squeezed into mW envelope

� Non-von-Neumann acceleration

� Very robust to trans-precision computations (deterministic and statistical)

� fJ/OP is in sight!

� More than CNN is needed (e.g. linear algebra, online optimizazion)

� Open Source HW & SW approach �innovation ecosystem
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Thanks for your attention!!!

www.pulp-platform.org
www-micrel.deis.unibo.it/pulp-project

iis-projects.ee.ethz.ch/index.php/PULP

The fun is just at the beginning...


