RISC-V Summit
December 3 - 6, 2018
Santa Clara Convention Center
CA, USA

REVOLUTIONIZING THE COMPUTING LANDSCAPE AND BEYOND.

https://tmt.knect365.com/risc-v-summit

@risc_v
AI AT THE EDGE USING PULP + EFPGA

Luca Benini
Professor
ETH Zurich

Timothy Saxe
CTO & SVP Engineering
QuickLogic

https://tmt.knect365.com/risc-v-summit
From Cloud …

- Optimal when sensors are simple (thermostat or switch)
- Applications have higher latency & power consumption
- Data security can be a factor
- Local insights are trivial and non-actionable
From Cloud … to Endpoint

- Optimal when sensors are simple (thermostat or switch)
- Applications have higher latency & power consumption
- Data security can a factor
- Local insights are trivial and non-actionable

- Smart Sensors ➔ rich data ➔ actionable if real-time
- Determine real-time local response
- Network sends insightful data (less bandwidth needed)
- Cloud focuses on aggregate data insights and actions
From Cloud … to Endpoint

• Optimal when sensors are simple (thermostat or switch)
• Applications have higher latency & power consumption
• Data security can a factor
• Local insights are trivial and non-actionable

Cloud and Endpoint AI should be **cooperative**, not competitive

• Smart Sensors ➔ rich data ➔ actionable if real-time
• Determine real-time local response
• Network sends insightful data (less bandwidth needed)
• Cloud focuses on aggregate data insights and actions
“Within the wide-area IoT segment, two distinct sub-segments with different requirements have emerged: massive and critical applications.

Massive IoT connections are characterized by high connection volumes and small data traffic volumes, **low cost** devices and **low energy** consumption.”

Dealing with severe resource constraints

1. Reduce vast amounts of raw sensor data into meaningful events
 ➔ AI appears to be the most practical way to map raw data into meaningful events

2. Use hardware processing engines to deliver energy efficiency
 ➔ Typical hardware accelerators deliver 3x to 10x more energy efficiency

3. Use hardware processing engines to augment CPU performance
 ➔ Typical hardware processing engines deliver 3x to 8x more performance
Excellent starting point for resource constrained devices

- 32b RISC core with ISA extensions
 → Increases energy efficiency of signal processing applications

- Autonomous I/O system
 → Increases energy efficiency by handling sensor I/O in hardware, not software

- Support for custom hardware processing elements
 → Enables further increases in either energy efficiency or performance
Future proofing hardware processing elements

- Your software crystal ball is hazy?
 → No problem, just send an over-the-air update to the software

- Your hardware crystal ball is hazy?
 - Don’t have eFPGA?
 → Workaround with software and pay the power penalty
 - Got eFPGA?
 → No problem, just send an over-the-air update to the eFPGA
Arnold = PULPissmo + eFPGA Testbed

- Cooperative effort between ETH Zurich and QuickLogic
- ETH supplied the PULPissimo
- QuickLogic supplied the eFPGA
- Uses GLOBALFOUNDRIES 22FDX
- Goal is to demonstrate tightly coupled hardware programmable processing elements deployed in the eFPGA
Three use cases for eFPGA

- **Co-processor use case**
 → Hardware processing element implemented in eFPGA to off-load the RISCY CPU

- **Pre-processor use case**
 → Hardware processing element inserted between the sensors and the RISCY CPU

- **Sensor/Actuator/Accelerator interface use case**
 → eFPGA directly interfaces with sensor, actuator or accelerator device with non-standard interface requirements
Co-processor use case

- RISCY sets up data in memory
- Data retrieved via Memory Interconnect
- State machines and data paths in eFPGA process the data using local DP memories as scratch memory
- Data sent back to memory via Memory Interconnect

- Lower power than pure software, higher than dedicated hardware
 - FFT, MFCC, DWT, BNN, etc.
Pre-processor use case

- RISCY sets up sensor and uDMA
- uDMA manages sensor and supplies sensor data to eFPGA
- State machines and data paths in eFPGA process the data using local DP memories as scratch memory
- Data sent to memory via Memory Interconnect to be processed by RISCY

- Lower power than pure software, higher than dedicated hardware
 - FFT, MFCC, DWT, ROI, Subsampling, Histogramming, reshaping, etc.
Sensor/Actuator/Accelerator use case

- eFPGA directly connected to I/O
- State machines and data paths handle sensor/actuator/accelerator interface
- Data sent to/from memory
- Provides precise I/O timing and data formatting required to interface with non-standard sensors, actuators or accelerator devices
 - Laser scanners, image sensors, PDM microphones, multi-color LEDs, CNN accelerators
Future combined use cases

- HWPE implements AI engine
- eFPGA manages sensor and formats data for the AI engine
- Covers the full energy efficiency flexibility space
Future combined use cases

- HWPE implements AI engine
- eFPGA manages sensor and formats data for the AI engine
- Covers the full energy efficiency flexibility space
THANK YOU

https://tmt.knect365.com/risc-v-summit