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Keyword Spotting at the extreme edge

• Voice-controlled personal assistants

• Drones controlled remotely to investigate hard-to-reach locations

• Hearing devices adapted to the environment conditions
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Accuracy degrades in real-world conditions

• Unknown environments where pretraining (offline) ≠ target (online) data
• Domain shifts, differences in sensors, knowledge expansion

• Accents, genders, background noises
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Noise-Aware Keyword Spotter (NA-KWS)

• Trained for generic robustness

• Accuracy drop compared to a noiseless 
model trained in noiseless conditions
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How to mitigate the performance degradation?

• Server-side training on on-site data [Lopez-Espejo2021, Ng2022]

× Does not respect privacy

× Communication will reduce            device lifetime

× User-specific labeled data is scarce
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How to mitigate the performance degradation?

• Server-side training on on-site data [Lopez-Espejo2021, Ng2022]

× Does not respect privacy

× Communication will reduce            device lifetime

× User-specific labeled data is scarce

• On-device training (by backpropagation) must address
✓Limited storage – tens of MB (e.g., data, model parameters)

✓Limited memory – hundreds of kB (e.g., activations, gradients)

✓Real-time operation – minimize latency (∝ #operations)

✓Always-on devices – minimize energy consumption
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On-Device Learning frameworks

Method Target device Proposed optimization Retrainable 
layers

Data type

[Ren2021] Arduino Nano 33 Retrain last (additional) 
layer

Linear FP32

[Lin2022] STM32 Quantized Sparse Update Convolutions, 
Linear

INT8, FP32

[Nadalini2022] Multicore RISC-V 
MCUs

Parallelism, SIMD, loop 
unrolling

Convolutions, 
Linear

FP32, FP16

We exploit the framework proposed by [Nadalini2022] 
• It addresses latency and energy consumption

• We additionally consider memory & storage constraints

to achieve end-to-end on-device domain learning for keyword spotting
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On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]
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On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]

• Deploy KWS model 

• Store pre-recorded utterances and labels

• Adapt to new environments
• Record noise from the environment

• Augment pre-recorded utterances

• On-device (supervised) learning 1. Forward pass – compute the activations
2. Backward pass

1. Compute the loss considering 
the ground truth (pre-recorded)

2. Compute the gradients through 
backpropagation

3. Update the parameters

e.g., freezing the backbone,
updating the classifier
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Forward pass – compute the activations

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1
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Backward pass – compute the loss

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

pulp_CrossEntropyLoss(&loss_args);

GO

𝑦𝑔

𝐿𝐶𝐸 = −𝑦𝑔𝑡log(𝑦𝑛)

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1
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Backward pass – compute the gradients (backpropagation)

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

pulp_CrossEntropyLoss(&loss_args);

pulp_linear_fp32_bw_cl(&l1_args);

GO

𝑦𝑔

𝐿𝐶𝐸 = −𝑦𝑔𝑡log(𝑦𝑛)

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1
𝜕𝐿

𝜕𝑊𝑛
=

𝜕𝐿

𝜕𝑦𝑛

𝜕𝑦𝑛
𝜕𝑊𝑛

𝑊𝑛
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Backward pass – update the weights

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

pulp_CrossEntropyLoss(&loss_args);

pulp_linear_fp32_bw_cl(&l1_args);

pulp_gradient_descent_fp32(&l1_args);

GO

𝑦𝑔

𝐿𝐶𝐸 = −𝑦𝑔𝑡log(𝑦𝑛)

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1
𝜕𝐿

𝜕𝑊𝑛
=

𝜕𝐿

𝜕𝑦𝑛

𝜕𝑦𝑛
𝜕𝑊𝑛

𝑊𝑛
′ = 𝑊𝑛 − η ∙

𝜕𝐿

𝜕𝑊𝑛

𝑊𝑛

𝑊𝑛
′
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Domain Adaptation – experimental setup

• Google Speech Commands [Warden2018] 
• 1-second audio @ 16 kHz
• {train,ODDA}:validation:test – 80:10:10

GSC-35

GSC-12

GO
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Domain Adaptation – experimental setup

• Google Speech Commands [Warden2018] 
• 1-second audio @ 16 kHz
• {train,ODDA}:validation:test – 80:10:10

• DEMAND [Thiemann2013] 
• Real-world noises; SNR = 0 dB
• 5 leave-one-out adaptation targets

(cafeteria, restaurant, meeting, metro, washing)

GO

GO

GSC-35

GSC-12
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Domain Adaptation increases KWS accuracy in all environments

• Accuracy increases by 
1%-14% on GSC-12
over noise robust 
NA-KWS models
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Domain Adaptation increases KWS accuracy in all environments

• Accuracy increases by 
1%-14% on GSC-12
over noise robust 
NA-KWS models

• The impact of ODDA 
increases for models 
with lower capacity

DS-CNN 
Model

Params. 
[kB]

Compute 
[MFLOPs]

S 23.7 2.95

M 138.1 17.2

L 416.7 51.1
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Resource-constrained On-Device Domain Learning

• Update fc1 layer of DS-CNN S
• 10 kB on-chip L1 memory

• 3 MB storage for pre-recorded samples

• DS-CNN SODDA = DS-CNN SNA-KWS + 5.5%
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Resource-constrained On-Device Domain Learning

• Update fc1 layer of DS-CNN S
• 10 kB on-chip L1 memory

• 3 MB storage for pre-recorded samples

• DS-CNN SODDA = DS-CNN SNA-KWS + 5.5%

• Refine backbone and classifier
• +1.2% over fc1 update using

10% of pre-recorded samples

• +6% over fc1 update using
100% of pre-recorded samples
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Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega [Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

DS-CNN 
Model

Compute 
[MFLOps]

Storage [kB]
Memory 

[kB]
Eff. [FLOPs/

cycle]
Compute 
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313
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Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega 
[Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

• 10 kB of L1 memory for backpropagation

DS-CNN 
Model

Compute 
[MFLOps]

Storage [kB]
Memory 

[kB]
Eff. [FLOPs/

cycle]
Compute 
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313

768 (3072 B)

768 (3072 B)

768 (3072 B)

76 (304 B)

Memory

Weights

Weight gradients

Weight update

Activations
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Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega 
[Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

• 10 kB of L1 memory for backpropagation

DS-CNN 
Model

Compute 
[MFLOps]

Storage [kB]
Memory 

[kB]
Eff. [FLOPs/

cycle]
Compute 
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313

Live Demonstration: On-Device Learning for Domain 
Adaptation on Low-Power Extreme Edge Embedded Systems

C2L-C on Thursday (10:50 – 12:20)
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Conclusions

• On-Device Domain Adaptation improves the accuracy over noise robust 
keyword spotting models by specializing on the target noise
• Accuracy gains up to 12% over NA-KWS at 0 dB for DS-CNN S

• Enables word recognition in non-stationary speech noise 

• On-Device Domain Adaptation operates on tinyML GAP9 platform
• +6% over NA-KWS in only 14 s

• 424 μJ per sample for DS-CNN S

• 10 kB of memory for backpropagation
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Conclusions

• On-Device Domain Adaptation improves the accuracy over noise robust 
keyword spotting models by specializing on the target noise

• On-Device Domain Adaptation operates on tinyML GAP9 platform

• What are we working on now?
• Pairing efficient on-device-learning with state-of-the-art (linear) attention-based 

backbones [Scherer2024]

• Expanding the methodology – from domain adaptation to domain (& class) 
incremental learning
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Conclusions

• On-Device Domain Adaptation improves the accuracy over noise robust keyword 
spotting models by specializing on the target noise
• Accuracy gains up to 12% over NA-KWS at 0 dB for DS-CNN S

• Enables word recognition in non-stationary speech noise 

• On-Device Domain Adaptation operates on tinyML GAP9 platform
• +6% over NA-KWS in extreme-edge conditions

• 424 μJ per epoch for DS-CNN S

• 10 kB of memory for backpropagation

• What are we working on now?
• Pairing efficient on-device-learning with state-of-the-art 

(linear) attention-based backbones [Scherer2024]

• Expanding the methodology – from domain adaptation 
to domain (& class) incremental learning

Q&A

Cristian Cioflan
cioflanc@ethz.ch
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