
2024 IEEE International Conference on Artificial Intelligence Circuits and Systems

On-Device Domain Learning for
Keyword Spotting on Low-Power
Extreme Edge Embedded Systems

†Integrated Systems Laboratory, ETH Zurich; ‡Zurich Research Center, Huawei Technologies;
∥ESAT, KU Leuven; ¶VERSES AI; §DEI, University of Bologna;

Cristian Cioflan†, Lukas Cavigelli‡, Manuele Rusci∥, Miguel de Prado¶, Luca Benini†§

2

Keyword Spotting at the extreme edge

• Voice-controlled personal assistants

• Drones controlled remotely to investigate hard-to-reach locations

• Hearing devices adapted to the environment conditions

3

Accuracy degrades in real-world conditions

• Unknown environments where pretraining (offline) ≠ target (online) data
• Domain shifts, differences in sensors, knowledge expansion

• Accents, genders, background noises

30

40

50

60

70

80

90

100

Cafeteria Meeting Metro Restaurant Washing

Noise-Aware KWS

SILENCE

Noise-Aware Keyword Spotter (NA-KWS)

• Trained for generic robustness

• Accuracy drop compared to a noiseless
model trained in noiseless conditions

4

How to mitigate the performance degradation?

• Server-side training on on-site data [Lopez-Espejo2021, Ng2022]

× Does not respect privacy

× Communication will reduce device lifetime

× User-specific labeled data is scarce

5

How to mitigate the performance degradation?

• Server-side training on on-site data [Lopez-Espejo2021, Ng2022]

× Does not respect privacy

× Communication will reduce device lifetime

× User-specific labeled data is scarce

• On-device training (by backpropagation) must address
✓Limited storage – tens of MB (e.g., data, model parameters)

✓Limited memory – hundreds of kB (e.g., activations, gradients)

✓Real-time operation – minimize latency (∝ #operations)

✓Always-on devices – minimize energy consumption

6

On-Device Learning frameworks

Method Target device Proposed optimization Retrainable
layers

Data type

[Ren2021] Arduino Nano 33 Retrain last (additional)
layer

Linear FP32

[Lin2022] STM32 Quantized Sparse Update Convolutions,
Linear

INT8, FP32

[Nadalini2022] Multicore RISC-V
MCUs

Parallelism, SIMD, loop
unrolling

Convolutions,
Linear

FP32, FP16

We exploit the framework proposed by [Nadalini2022]
• It addresses latency and energy consumption

• We additionally consider memory & storage constraints

to achieve end-to-end on-device domain learning for keyword spotting

7

On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]

8

On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]

• Deploy KWS model

• Store pre-recorded utterances and labels

GO

9

On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]

• Deploy KWS model

• Store pre-recorded utterances and labels

• Adapt to new environments
• Record noise from the environment

• Augment pre-recorded utterances
GO GO

10

On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]

• Deploy KWS model

• Store pre-recorded utterances and labels

• Adapt to new environments
• Record noise from the environment

• Augment pre-recorded utterances

• On-device (supervised) learning 1. Forward pass – compute the activations
2. Backward pass

1. Compute the loss considering
the ground truth (pre-recorded)

2. Compute the gradients through
backpropagation

3. Update the parameters

11

On-Device Domain Learning – the methodology

• Enable on-device keyword spotting
• Train (and quantize) NA-KWS model – on the server [Cioflan2022]

• Deploy KWS model

• Store pre-recorded utterances and labels

• Adapt to new environments
• Record noise from the environment

• Augment pre-recorded utterances

• On-device (supervised) learning 1. Forward pass – compute the activations
2. Backward pass

1. Compute the loss considering
the ground truth (pre-recorded)

2. Compute the gradients through
backpropagation

3. Update the parameters

e.g., freezing the backbone,
updating the classifier

12

Forward pass – compute the activations

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1

13

Backward pass – compute the loss

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

pulp_CrossEntropyLoss(&loss_args);

GO

𝑦𝑔

𝐿𝐶𝐸 = −𝑦𝑔𝑡log(𝑦𝑛)

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1

14

Backward pass – compute the gradients (backpropagation)

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

pulp_CrossEntropyLoss(&loss_args);

pulp_linear_fp32_bw_cl(&l1_args);

GO

𝑦𝑔

𝐿𝐶𝐸 = −𝑦𝑔𝑡log(𝑦𝑛)

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1
𝜕𝐿

𝜕𝑊𝑛
=

𝜕𝐿

𝜕𝑦𝑛

𝜕𝑦𝑛
𝜕𝑊𝑛

𝑊𝑛

15

Backward pass – update the weights

𝑦𝑛−1 𝑦𝑛

pulp_backbone_int8_fw_cl(&args);

pulp_linear_fp32_fw_cl(&args);

pulp_CrossEntropyLoss(&loss_args);

pulp_linear_fp32_bw_cl(&l1_args);

pulp_gradient_descent_fp32(&l1_args);

GO

𝑦𝑔

𝐿𝐶𝐸 = −𝑦𝑔𝑡log(𝑦𝑛)

𝑦𝑛 = 𝑊𝑛 ∙ 𝑦𝑛−1
𝜕𝐿

𝜕𝑊𝑛
=

𝜕𝐿

𝜕𝑦𝑛

𝜕𝑦𝑛
𝜕𝑊𝑛

𝑊𝑛
′ = 𝑊𝑛 − η ∙

𝜕𝐿

𝜕𝑊𝑛

𝑊𝑛

𝑊𝑛
′

16

Domain Adaptation – experimental setup

• Google Speech Commands [Warden2018]
• 1-second audio @ 16 kHz
• {train,ODDA}:validation:test – 80:10:10

GSC-35

GSC-12

GO

17

Domain Adaptation – experimental setup

• Google Speech Commands [Warden2018]
• 1-second audio @ 16 kHz
• {train,ODDA}:validation:test – 80:10:10

• DEMAND [Thiemann2013]
• Real-world noises; SNR = 0 dB
• 5 leave-one-out adaptation targets

(cafeteria, restaurant, meeting, metro, washing)

GO

GO

GSC-35

GSC-12

18

Domain Adaptation increases KWS accuracy in all environments

• Accuracy increases by
1%-14% on GSC-12
over noise robust
NA-KWS models

60

65

70

75

80

85

90

95

100

Restaurant Meeting Cafeteria Metro Washing

A
cc

u
ra

cy
 [

%
]

Environment

NA-KWS (S)

ODDA (S)

NA-KWS (M)

ODDA (M)

NA-KWS (L)

ODDA (L)

Method (Model)

19

Domain Adaptation increases KWS accuracy in all environments

• Accuracy increases by
1%-14% on GSC-12
over noise robust
NA-KWS models

• The impact of ODDA
increases for models
with lower capacity

DS-CNN
Model

Params.
[kB]

Compute
[MFLOPs]

S 23.7 2.95

M 138.1 17.2

L 416.7 51.1
60

65

70

75

80

85

90

95

100

Restaurant Meeting Cafeteria Metro Washing

A
cc

u
ra

cy
 [

%
]

Environment

NA-KWS (S)

ODDA (S)

NA-KWS (M)

ODDA (M)

NA-KWS (L)

ODDA (L)

Method (Model)

20

Resource-constrained On-Device Domain Learning

• Update fc1 layer of DS-CNN S
• 10 kB on-chip L1 memory

• 3 MB storage for pre-recorded samples

• DS-CNN SODDA = DS-CNN SNA-KWS + 5.5%

21

Resource-constrained On-Device Domain Learning

• Update fc1 layer of DS-CNN S
• 10 kB on-chip L1 memory

• 3 MB storage for pre-recorded samples

• DS-CNN SODDA = DS-CNN SNA-KWS + 5.5%

• Refine backbone and classifier
• +1.2% over fc1 update using

10% of pre-recorded samples

• +6% over fc1 update using
100% of pre-recorded samples

22

Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega [Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

DS-CNN
Model

Compute
[MFLOps]

Storage [kB]
Memory

[kB]
Eff. [FLOPs/

cycle]
Compute
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313

23

Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega [Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

• 10 kB of L1 memory for backpropagation

DS-CNN
Model

Compute
[MFLOps]

Storage [kB]
Memory

[kB]
Eff. [FLOPs/

cycle]
Compute
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313

24

Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega
[Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

• 10 kB of L1 memory for backpropagation

DS-CNN
Model

Compute
[MFLOps]

Storage [kB]
Memory

[kB]
Eff. [FLOPs/

cycle]
Compute
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313

768 (3072 B)

768 (3072 B)

768 (3072 B)

76 (304 B)

Memory

Weights

Weight gradients

Weight update

Activations

25

Implementation on GAP9

• Greenwaves GAP9 – based on PULP Vega
[Rossi2022]

• Low-power mode: 240 MHz, 650 mV
• On-device learning in ½ mJ, ready in 11 ms per sample

• 10 kB of L1 memory for backpropagation

DS-CNN
Model

Compute
[MFLOps]

Storage [kB]
Memory

[kB]
Eff. [FLOPs/

cycle]
Compute
time [ms]

Energy [μJ]

S 2.95 23.7 9.5 4.94 10.89 424

M 17.2 138.1 25.5 9.18 24.16 988

L 51.1 416.7 40.9 11 55.04 2313

Live Demonstration: On-Device Learning for Domain
Adaptation on Low-Power Extreme Edge Embedded Systems

C2L-C on Thursday (10:50 – 12:20)

26

Conclusions

• On-Device Domain Adaptation improves the accuracy over noise robust
keyword spotting models by specializing on the target noise
• Accuracy gains up to 12% over NA-KWS at 0 dB for DS-CNN S

• Enables word recognition in non-stationary speech noise

• On-Device Domain Adaptation operates on tinyML GAP9 platform
• +6% over NA-KWS in only 14 s

• 424 μJ per sample for DS-CNN S

• 10 kB of memory for backpropagation

27

Conclusions

• On-Device Domain Adaptation improves the accuracy over noise robust
keyword spotting models by specializing on the target noise

• On-Device Domain Adaptation operates on tinyML GAP9 platform

• What are we working on now?
• Pairing efficient on-device-learning with state-of-the-art (linear) attention-based

backbones [Scherer2024]

• Expanding the methodology – from domain adaptation to domain (& class)
incremental learning

28

References

[Lopez-Espejo2021] I. Lopez-Espejo et al., “A novel loss function ´and training strategy for noise-robust keyword spotting,”
IEEE/ACM TASLP, 2021.
[Ng2022] D. Ng et al., “Convmixer: Feature interactive convolution with curriculum learning for small footprint and noisy
far-field keyword spotting,” in ICASSP, 2022.
[Ren2021] H. Ren et al., “Tinyol: Tinyml with onlinelearning on microcontrollers,” in IJCNN, 2021.
[Lin2022] J. Lin et al., “On-device training under 256kb memory,” in NeurIPS, 2022.
[Nadalini2022] D. Nadalini et al., “Pulp-trainlib: Enabling on-device training for risc-v multi-core mcus through
performance-driven autotuning,” in Embedded Computer Systems: Architectures, Modeling, and Simulation, 2022.
[Tatman2017] R. Tatman, C. Kasten, "Effects of Talker Dialect, Gender & Race on Accuracy of Bing Speech and YouTube
Automatic Captions," in Interspeech, 2017.
[Savoldi2022] B. Savoldi et al, "Under the Morphosyntactic Lens: A Multifaceted Evaluation of Gender Bias in Speech
Translation," in Annual Meeting of the Association for Computational Linguistics, 2022.
[Cioflan2022] C. Cioflan et al., "Towards On-device Domain Adaptation for Noise-Robust Keyword Spotting," AICAS, 2024.
[Warden2018] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recognition,” arXiv preprint
arXiv:1804.03209, 2018.
[Thiemann2013] J. Thiemann et al. "DEMAND: a collection of multi-channel recordings of acoustic noise in diverse
environments," in Proc. Meetings Acoust, 2013.
[Rossi2022] D. Rossi et al., "Vega: A Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up From
MRAM-Based State-Retentive Sleep Mode," in IEEE Journal of Solid-State Circuits, 2022.
[Scherer2024] M. Scherer et al., “Work In Progress: Linear Transformers for TinyML”, in DATE, 2024.

29

Conclusions

• On-Device Domain Adaptation improves the accuracy over noise robust keyword
spotting models by specializing on the target noise
• Accuracy gains up to 12% over NA-KWS at 0 dB for DS-CNN S

• Enables word recognition in non-stationary speech noise

• On-Device Domain Adaptation operates on tinyML GAP9 platform
• +6% over NA-KWS in extreme-edge conditions

• 424 μJ per epoch for DS-CNN S

• 10 kB of memory for backpropagation

• What are we working on now?
• Pairing efficient on-device-learning with state-of-the-art

(linear) attention-based backbones [Scherer2024]

• Expanding the methodology – from domain adaptation
to domain (& class) incremental learning

Q&A

Cristian Cioflan
cioflanc@ethz.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

