

On-Device Domain Learning for Keyword Spotting on Low-Power Extreme Edge Embedded Systems

Cristian Cioflan[†], Lukas Cavigelli[‡], Manuele Rusci^{II}, Miguel de Prado[¶], Luca Benini^{†§}

[†]Integrated Systems Laboratory, ETH Zurich; [‡]Zurich Research Center, Huawei Technologies; ^{II}ESAT, KU Leuven; [¶]VERSES AI; [§]DEI, University of Bologna;

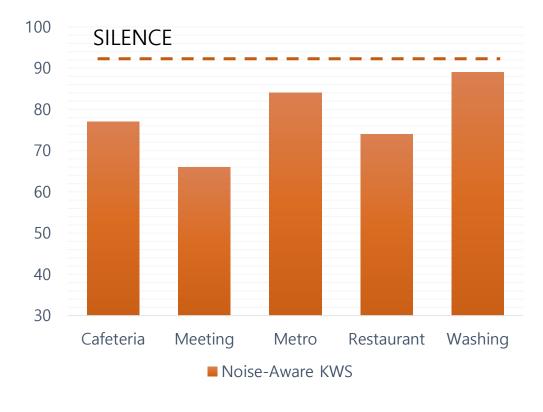
2024 IEEE International Conference on Artificial Intelligence Circuits and Systems

Keyword Spotting at the extreme edge

- Voice-controlled personal assistants
- Drones controlled remotely to investigate hard-to-reach locations
- Hearing devices adapted to the environment conditions

Accuracy degrades in real-world conditions

- Unknown environments where pretraining (offline) ≠ target (online) data
 - Domain shifts, differences in sensors, knowledge expansion
 - Accents, genders, **background noises**



Noise-Aware Keyword Spotter (NA-KWS)

- Trained for **generic** robustness
- Accuracy drop compared to a noiseless model trained in noiseless conditions

How to mitigate the performance degradation?

Server-side training on on-site data [Lopez-Espejo2021, Ng2022]
× Does not respect privacy
× Communication will reduce
✓ device lifetime
× User-specific labeled data
✓ is scarce

How to mitigate the performance degradation?

On-device training (by backpropagation) must address
✓ Limited storage – tens of MB (e.g., data, model parameters)
✓ Limited memory – hundreds of kB (e.g., activations, gradients)
✓ Real-time operation – minimize latency (∝ #operations)
✓ Always-on devices – minimize energy consumption

On-Device Learning frameworks

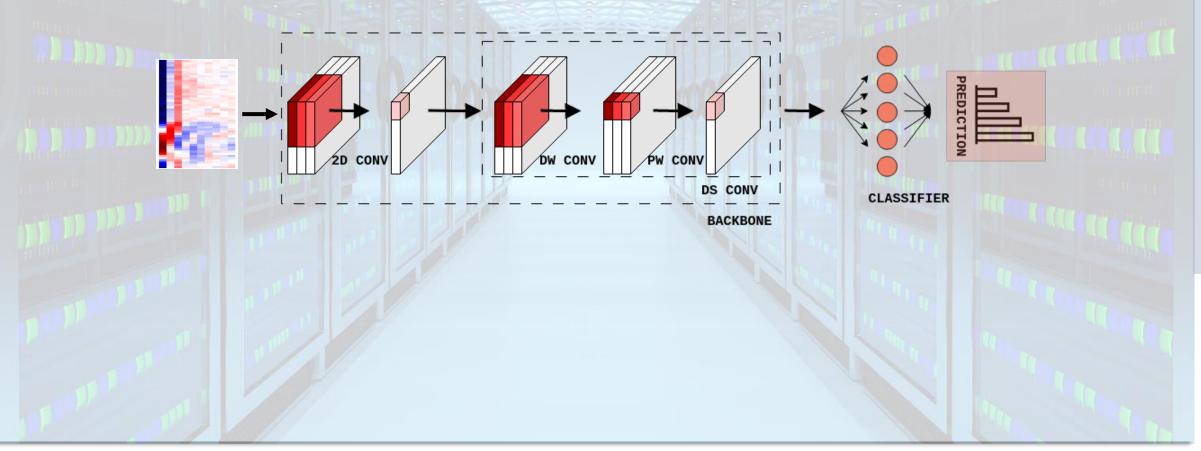
Method	Target device	Proposed optimization	Retrainable layers	Data type
[Ren2021]	Arduino Nano 33	Retrain last (additional) layer	Linear	FP32
[Lin2022]	STM32	Quantized Sparse Update	Convolutions, Linear	INT8, FP32
[Nadalini2022]	Multicore RISC-V MCUs	Parallelism, SIMD, loop unrolling	Convolutions, Linear	FP32, FP16

We exploit the framework proposed by [Nadalini2022]

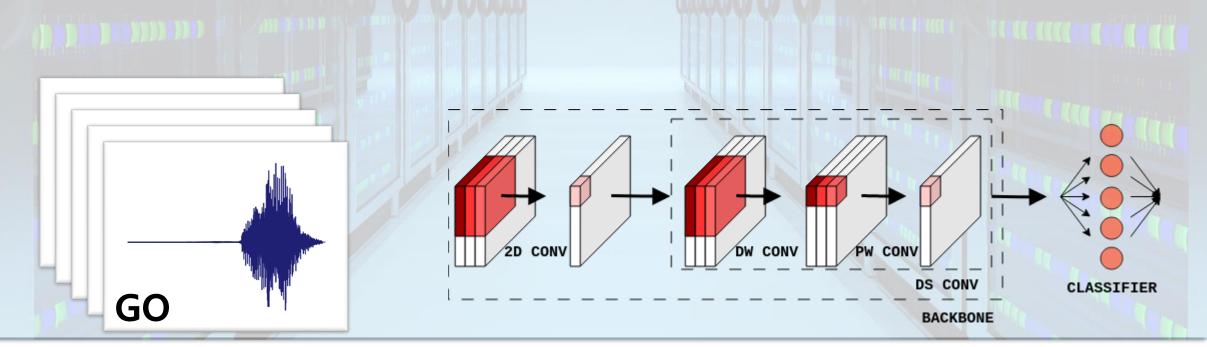
- It addresses latency and energy consumption
- We additionally consider memory & storage constraints

to achieve end-to-end on-device domain learning for keyword spotting

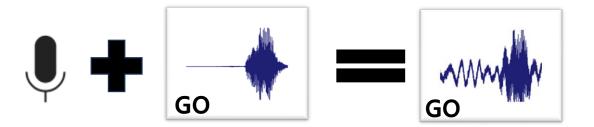
- Enable on-device keyword spotting
 - Train (and quantize) NA-KWS model on the server [Cioflan2022]



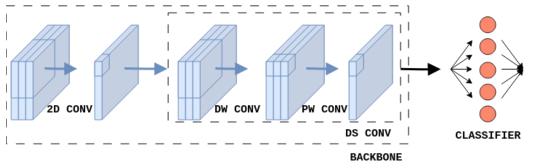
- Enable on-device keyword spotting
 - Train (and quantize) NA-KWS model on the server [Cioflan2022]
 - Deploy KWS model
 - Store pre-recorded utterances and labels



- Enable on-device keyword spotting
 - Train (and quantize) NA-KWS model on the server [Cioflan2022]
 - Deploy KWS model
 - Store pre-recorded utterances and labels
- Adapt to new environments
 - Record noise from the environment
 - Augment pre-recorded utterances

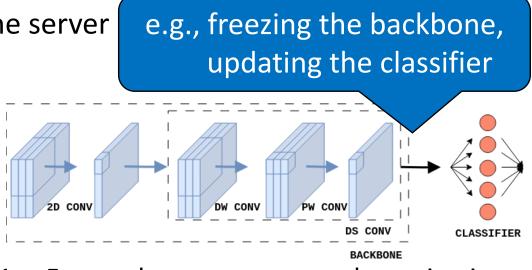


- Enable on-device keyword spotting
 - Train (and quantize) NA-KWS model on the server [Cioflan2022]
 - Deploy KWS model
 - Store pre-recorded utterances and labels
- Adapt to new environments
 - Record noise from the environment
 - Augment pre-recorded utterances
 - On-device (supervised) learning



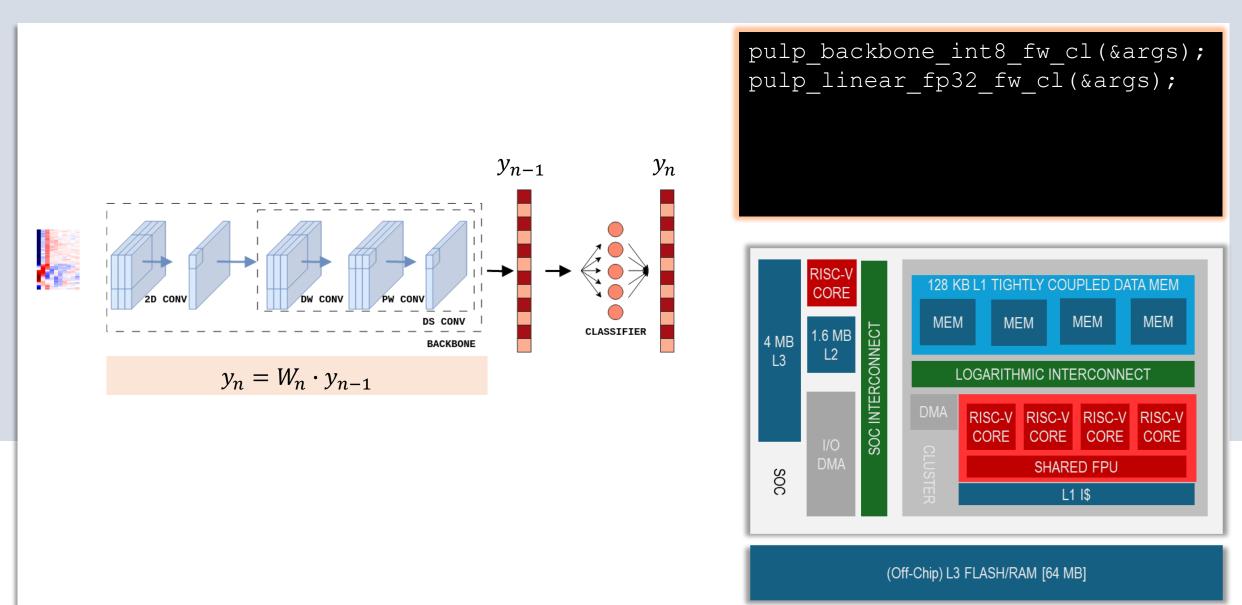
- 1. Forward pass compute the activations
- 2. Backward pass
 - 1. Compute the loss considering the ground truth (pre-recorded)
 - 2. Compute the gradients through *backpropagation*
 - 3. Update the parameters

- Enable on-device keyword spotting
 - Train (and quantize) NA-KWS model on the server
 - Deploy KWS model
 - Store pre-recorded utterances and labels
- Adapt to new environments
 - Record noise from the environment
 - Augment pre-recorded utterances
 - On-device (supervised) learning

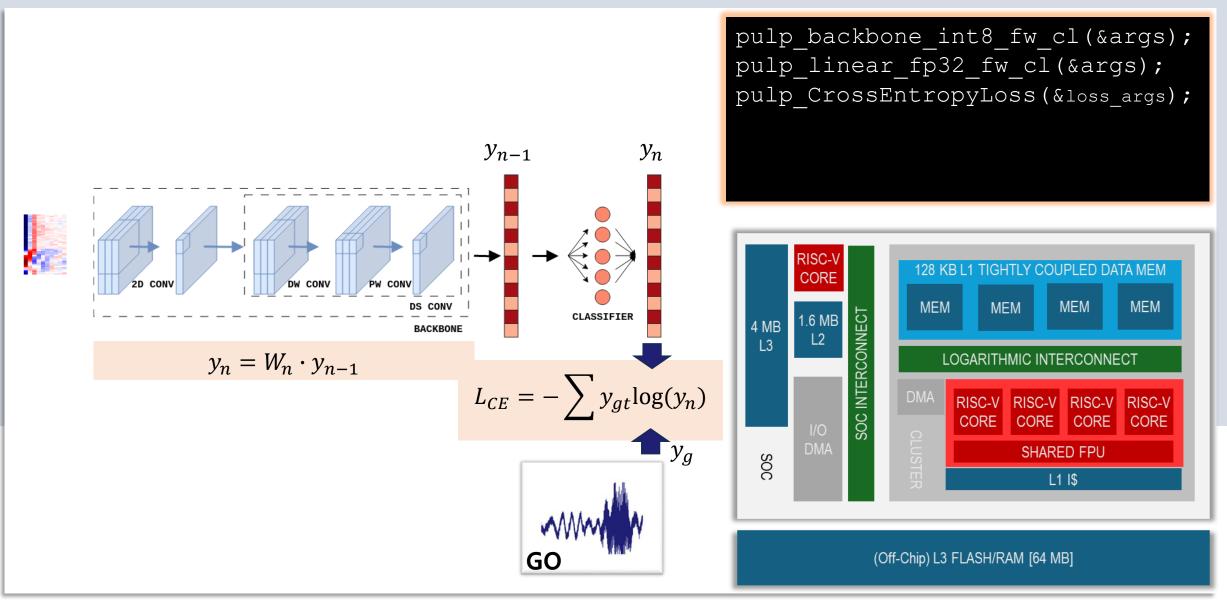


- 1. Forward pass compute the activations
- 2. Backward pass
 - 1. Compute the loss considering the ground truth (pre-recorded)
 - 2. Compute the gradients through *backpropagation*
 - 3. Update the parameters

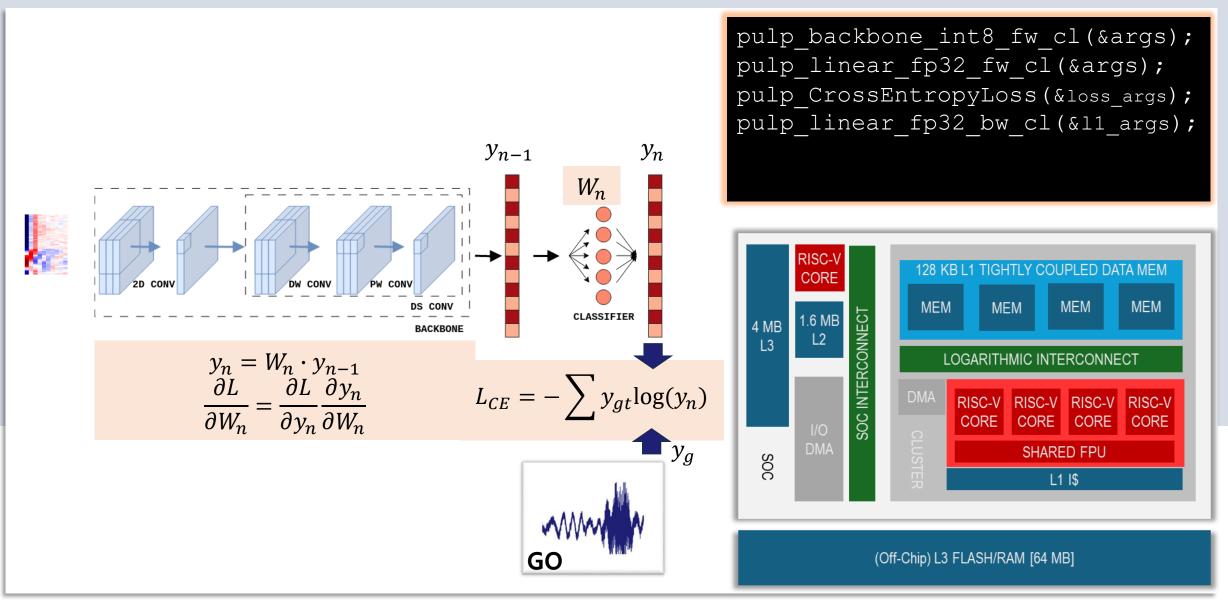
Forward pass – compute the activations



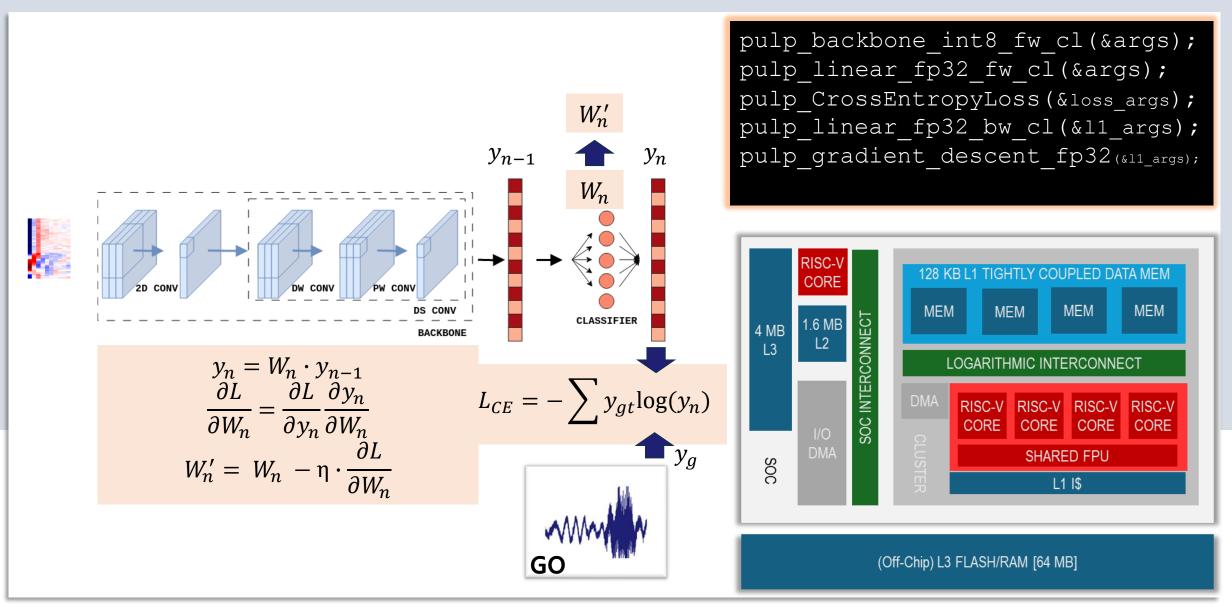
Backward pass – compute the loss



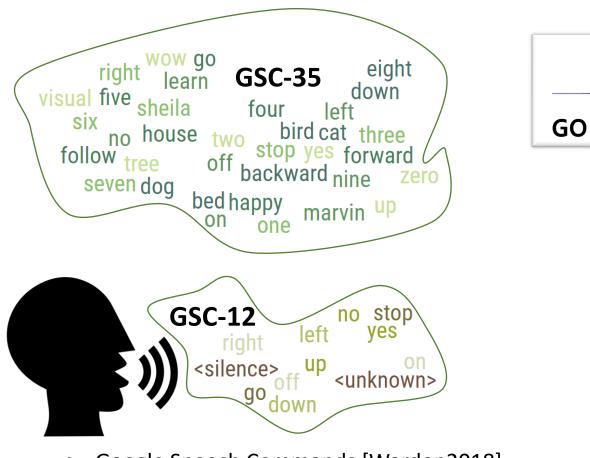
Backward pass - compute the gradients (backpropagation)



Backward pass – update the weights

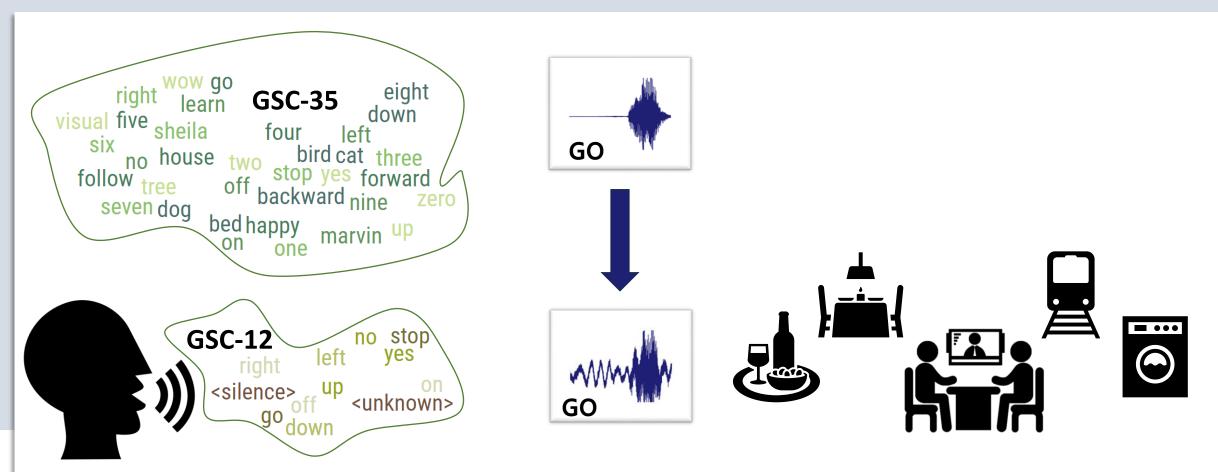


Domain Adaptation – experimental setup



- Google Speech Commands [Warden2018]
- 1-second audio @ 16 kHz
- {train,ODDA}:validation:test 80:10:10

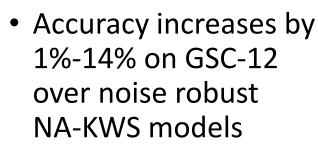
Domain Adaptation – experimental setup

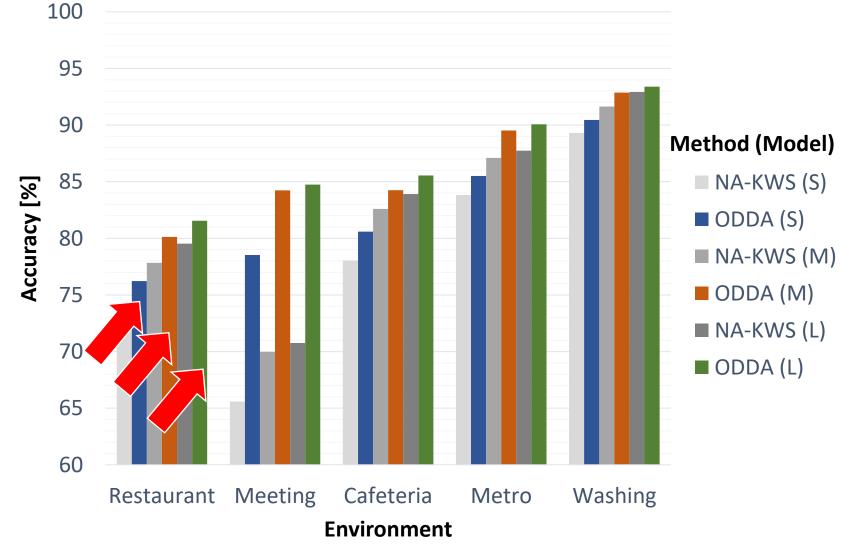


- Google Speech Commands [Warden2018]
- 1-second audio @ 16 kHz
- {train,ODDA}:validation:test 80:10:10

- DEMAND [Thiemann2013]
- Real-world noises; SNR = 0 dB
- 5 leave-one-out adaptation targets (cafeteria, restaurant, meeting, metro, washing)

Domain Adaptation increases KWS accuracy in all environments

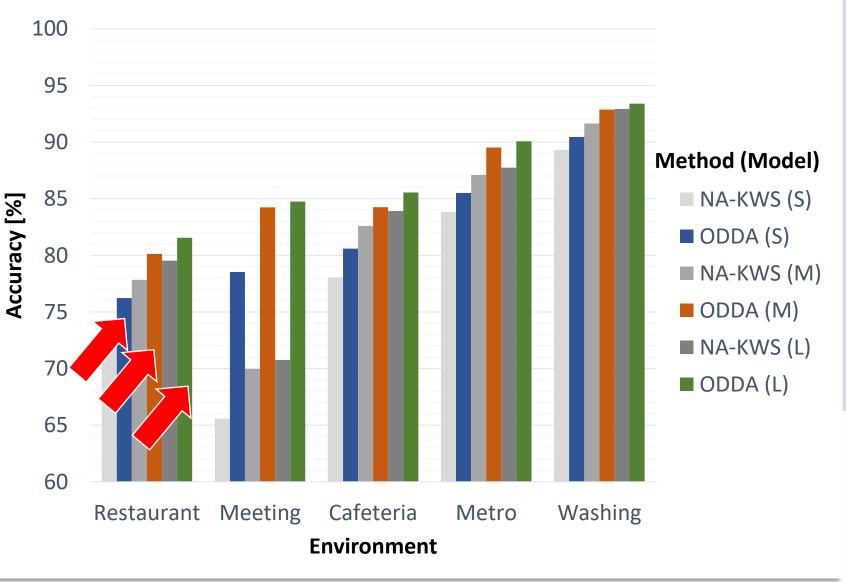




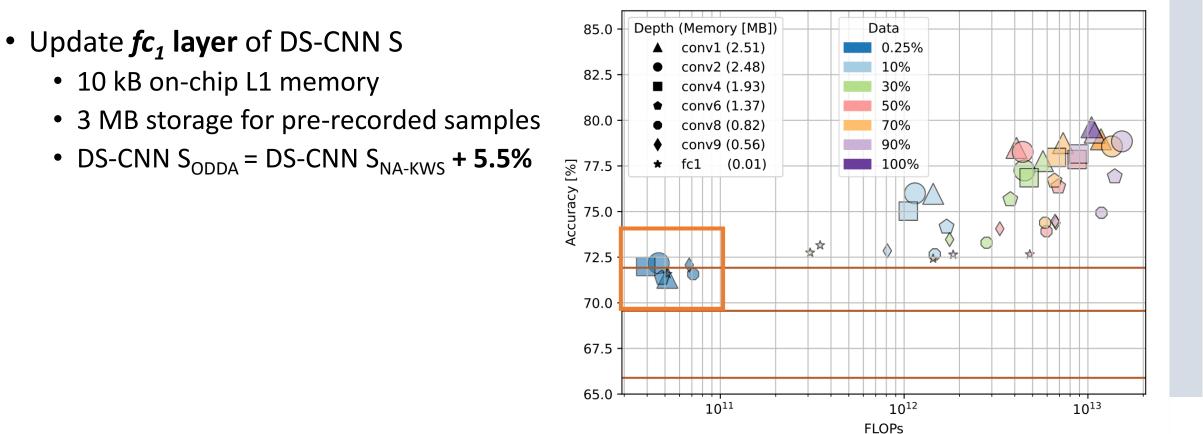
Domain Adaptation increases KWS accuracy in all environments

- Accuracy increases by 1%-14% on GSC-12 over noise robust NA-KWS models
- The impact of ODDA increases for models with lower capacity

DS-CNN Model	Params. [kB]	Compute [MFLOPs]
S	23.7	2.95
М	138.1	17.2
L	416.7	51.1

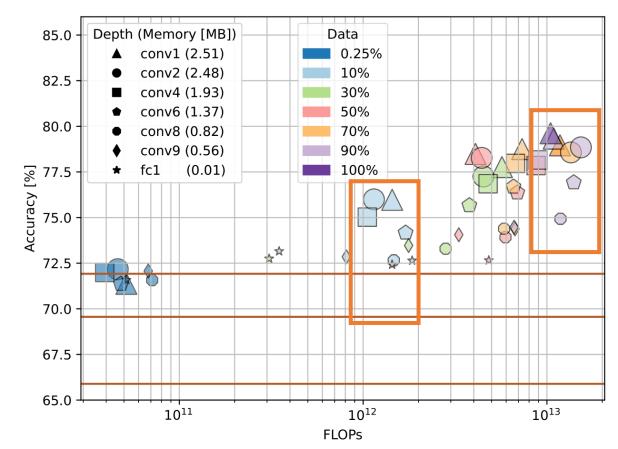


Resource-constrained On-Device Domain Learning



Resource-constrained On-Device Domain Learning

- Update *fc₁* layer of DS-CNN S
 - 10 kB on-chip L1 memory
 - 3 MB storage for pre-recorded samples
 - DS-CNN $S_{ODDA} = DS-CNN S_{NA-KWS} + 5.5\%$
- Refine backbone and classifier
 - +1.2% over fc₁ update using 10% of pre-recorded samples
 - +6% over fc₁ update using 100% of pre-recorded samples



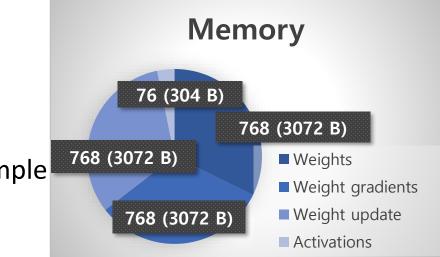
- Greenwaves GAP9 based on PULP Vega [Rossi2022]
- Low-power mode: 240 MHz, 650 mV
 - On-device learning in ½ mJ, ready in 11 ms per sample

DS-CNN Model	Compute [MFLOps]	Storage [kB]	Memory [kB]	Eff. [FLOPs/ cycle]	Compute time [ms]	Energy [µJ]
S	2.95	23.7	9.5	4.94	10.89	424
Μ	17.2	138.1	25.5	9.18	24.16	988
L	51.1	416.7	40.9	11	55.04	2313

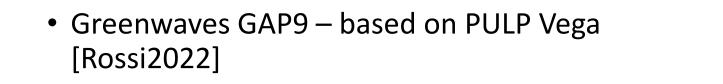
- Greenwaves GAP9 based on PULP Vega [Rossi2022]
- Low-power mode: 240 MHz, 650 mV
 - On-device learning in ½ mJ, ready in 11 ms per sample
 - 10 kB of L1 memory for backpropagation

DS-CNN Model	Compute [MFLOps]	Storage [kB]	Memory [kB]	Eff. [FLOPs/ cycle]	Compute time [ms]	Energy [µJ]
S	2.95	23.7	9.5	4.94	10.89	424
Μ	17.2	138.1	25.5	9.18	24.16	988
L	51.1	416.7	40.9	11	55.04	2313

- Greenwaves GAP9 based on PULP Vega [Rossi2022]
- Low-power mode: 240 MHz, 650 mV
 - On-device learning in ½ mJ, ready in 11 ms per sample
 - 10 kB of L1 memory for backpropagation



DS-CNN Model	Compute [MFLOps]	Storage [kB]	Memory [kB]	Eff. [FLOPs/ cycle]	Compute time [ms]	Energy [µJ]
S	2.95	23.7	9.5	4.94	10.89	424
Μ	17.2	138.1	25.5	9.18	24.16	988
L	51.1	416.7	40.9	11	55.04	2313



- Low-power mode: 240 MHz, 650 mV
 - On-device learning in ½ mJ, ready in 11 ms per sample
 - 10 kB of L1 memory for backpropagation

Live Demonstration: On-Device Learning for Domain

GREENWAVES

DS-CNN Model	Adaptation on Low-Power Extreme Edge Embedded Systems C2L-C on Thursday (10:50 – 12:20)					
S						
М	17.2	138.1	25.5	9.18	24.16	988
L	51.1	416.7	40.9	11	55.04	2313

Conclusions

- On-Device Domain Adaptation improves the accuracy over noise robust keyword spotting models by specializing on the target noise
 - Accuracy gains up to 12% over NA-KWS at 0 dB for DS-CNN S
 - Enables word recognition in non-stationary speech noise
- On-Device Domain Adaptation operates on tinyML GAP9 platform
 - +6% over NA-KWS in only 14 s
 - 424 μJ per sample for DS-CNN S
 - 10 kB of memory for backpropagation

Conclusions

- On-Device Domain Adaptation improves the accuracy over noise robust keyword spotting models by specializing on the target noise
- On-Device Domain Adaptation operates on tinyML GAP9 platform
- What are we working on now?
 - Pairing efficient on-device-learning with state-of-the-art (linear) attention-based backbones [Scherer2024]
 - Expanding the methodology from domain adaptation to domain (& class) incremental learning

References

[Lopez-Espejo2021] I. Lopez-Espejo et al., "A novel loss function 'and training strategy for noise-robust keyword spotting," *IEEE/ACM TASLP*, 2021.

[Ng2022] D. Ng et al., "Convmixer: Feature interactive convolution with curriculum learning for small footprint and noisy far-field keyword spotting," in *ICASSP*, 2022.

[Ren2021] H. Ren et al., "Tinyol: Tinyml with onlinelearning on microcontrollers," in *IJCNN*, 2021.

[Lin2022] J. Lin et al., "On-device training under 256kb memory," in *NeurIPS*, 2022.

[Nadalini2022] D. Nadalini et al., "Pulp-trainlib: Enabling on-device training for risc-v multi-core mcus through

performance-driven autotuning," in Embedded Computer Systems: Architectures, Modeling, and Simulation, 2022.

[Tatman2017] R. Tatman, C. Kasten, "Effects of Talker Dialect, Gender & Race on Accuracy of Bing Speech and YouTube Automatic Captions," in *Interspeech*, 2017.

[Savoldi2022] B. Savoldi et al, "Under the Morphosyntactic Lens: A Multifaceted Evaluation of Gender Bias in Speech Translation," in *Annual Meeting of the Association for Computational Linguistics*, 2022.

[Cioflan2022] C. Cioflan et al., "Towards On-device Domain Adaptation for Noise-Robust Keyword Spotting," *AICAS*, 2024. [Warden2018] P. Warden, "Speech commands: A dataset for limited-vocabulary speech recognition," *arXiv preprint arXiv:1804.03209*, 2018.

[Thiemann2013] J. Thiemann et al. "DEMAND: a collection of multi-channel recordings of acoustic noise in diverse environments," in *Proc. Meetings Acoust*, 2013.

[Rossi2022] D. Rossi et al., "Vega: A Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up From MRAM-Based State-Retentive Sleep Mode," in *IEEE Journal of Solid-State Circuits*, 2022.

[Scherer2024] M. Scherer et al., "Work In Progress: Linear Transformers for TinyML", in DATE, 2024.

Conclusions

- On-Device Domain Adaptation improves the accuracy over noise robust keyword spotting models by specializing on the target noise
 - Accuracy gains up to 12% over NA-KWS at 0 dB for DS-CNN S
 - Enables word recognition in non-stationary speech noise
- On-Device Domain Adaptation operates on tinyML GAP9 platform
 - +6% over NA-KWS in extreme-edge conditions
 - 424 μJ per epoch for DS-CNN S
 - 10 kB of memory for backpropagation
- What are we working on now?
 - Pairing efficient on-device-learning with state-of-the-art (linear) attention-based backbones [Scherer2024]
 - Expanding the methodology from domain adaptation to domain (& class) incremental learning

