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Spectre: Exploiting timing channels to leak data [1]

[1] Kocher et al., Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019
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Temporal fence instruction (fence.t): Clear μArch [2]
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Arb FIFOPLRU PLRU LFSRLFSR

clear

Microarchitectural state:
Not directly visible or 

modifiable by SW.
Cleared by fence.t

Architectural state:
Not cleared by fence.t

CVA6: 6-stage, in-
order RV64GC core

Can we implement fence.t 
in OoO cores?

What are the performance 
implications for OoO?

[2] Wistoff et al., Systematic Prevention of On-Core Timing Channels by Full Temporal Partitioning, IEEE Trans. Comp. 2023



Contributions

• We show that adding fence.t to out-of-order (OoO) cores comes with new 
challenges

• We present the SW-supported temporal fence (fence.t.s) to address 
these challenges.

• We implement fence.t.s in a fully-featured, open-sourced, commercial, 
high-performance 64-bit RISC-V core, namely OpenC910.

• We show that fence.t.s closes all on-core timing channels in OpenC910 
without measurable HW overhead at a performance overhead of 1.0 %.
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T-Head OpenC910 [3]
• T-Head Semiconductor Co., Ltd.

• 64-bit, application-class, 12-Stage, superscalar, Out-of-
Order, RISC-V RV64GCXtheadc core.

• Verilog RTL open-sourced in 2021 under the Apache license.
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[3] Chen et al., Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit 
High Performance RISC-V Processor with Vector Extension, ACM/IEEE ISCA 2020

github.com/XUANTIE-RV/openc910

Operating Frequency 2.0-2.5 GHz (12nm FinFET)

Pipeline stages 12

ROB up to 192 instructions

Decode width 3

Issue width/FUs 8

[3]

[3]

[3]



Challenge 1: Mixed state
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Challenge 1: Mixed state
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Solution 1: Save context before clearing

Wistoff et al. | APPLEPIES | 2024-09-20 9

[x1]

[x2]

[x3]

[x4]

Step 1: Save architectural 
registers in main memory

Main MemoryPhysical Register File (PRF)Register Allocation 
Table (RAT)

x1

x2

x3

x4

p4

p2

p0

p4

p0

p1

p2

p3

[x3]

[x2]

p4

p5

[x1], [x4]



Solution 1: Save context before clearing
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Solution 1: Save context before clearing
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Challenge 2: Reusability of Instructions

• One monolithic temporal fence instruction has several disadvantages

• No reuse of the implemented mechanisms.

• No fine-grain control over which components to clear (security-performance tradeoff).

• Complex control logic.

• Solution: Split temporal fence into multiple instructions.
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SW-supported temporal 
fence (fence.t.s) for all r ∈ ArchRegs do

stack ← r
end for

scratch ← sp

ClearL1D

InvalSRAMs

ClearFFs

sp ← scratch

for all r ∈ ArchRegs do
r ← stack

end for

PadTime

Save architectural registers 
to main memory

Save stack pointer to a well-
known, protected location Write back 

dirty L1D state
Invalidate SRAMs

Clear flip-flopsRestore stack pointer

Restore architectural registers

Pad execution time to prevent 
leakage through context-
switch latency



fence.t.s in OpenC910
for all r ∈ ArchRegs do

stack ← r
end for

scratch ← sp

ClearL1D

InvalSRAMs

ClearFFs

sp ← scratch

for all r ∈ ArchRegs do
r ← stack

end for

PadTime

addi sp, sp, -31*8
csrw sscratch, sp
sd x1, 0*8(sp)
…
sd x31, 30*8(sp)

Standard RISC-V

dcache.call
li t0, 0x70011
csrs mcor, t0

XtheadcXtheadc

la t0, post_ff_clr
csrw mrvbr, t0
sync.i
ff.clr
post_ff_clr:
sync.i

Xtheadc

New instruction: 
Clear all on-core 
FFs except CSRs

csrr sp, sscratch
ld x1, 0*8(sp)
…
ld x31, 30*8(sp)
addi sp, sp, 31*8

Standard RISC-V



Experimental setup
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[4] Ge et al., No security without time protection: We need a new hardware-software contract, ACM APSys 2018



fence.t.s closes all timing channels!
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fence.t.s is inexpensive!

• 2 threads: 1 benchmark + 1 idle

• 1GHz system clock

• 10ms timeslice

• Context switch every 10M cycles

• Synthesis in GF12 LP+
FinFET @2GHz
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Conclusion

• We presented the SW-supported temporal fence (fence.t.s) methodology 
to close timing channels even in high-performance out-of-order cores.

• We showed that fence.t.s can reliably close all observed timing channels in 
OpenC910.

• We showed that fence.t.s comes at a negligible HW overhead and a 
minimal performance overhead of 1.0 %.

• We found that OpenC910 already provides most mechanisms hat are required 
to enable time protection. Specifying them would enable time protection across 
implementations.
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Case study: T-Head OpenC910 Xtheadc extension
• Custom instructions:

• dcache.call: clear the L1 data cache.

• sync.i: execution barrier in the instruction stream.

• …

• Custom control and status registers (CSRs):

• mcor: invalidate selected SRAMs in the core.

• mrvbr: reset address.

• …
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[3] Chen et al., Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with 
Vector Extension, ACM/IEEE ISCA 2020

github.com/XUANTIE-RV/openc910


