
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

International Conference on Applications in Electronics Pervading Industry,
Environment and Society (APPLEPIES), Turin, Italy, 2024-09-20

fence.t.s: Closing Timing Channels in High-Performance Out-
of-Order Cores through ISA-Supported Temporal Partitioning

Nils Wistoff1 nwistoff@iis.ee.ethz.ch
Gernot Heiser2 gernot@unsw.edu.au
Luca Benini1,3 lbenini@iis.ee.ethz.ch

1 IIS, ETH Zurich, Switzerland
2 UNSW Sydney, Australia
3 DEI, University of Bologna, Italy

Wistoff et al. | APPLEPIES | 2024-09-20 2

Speculative
Execution

+
Timing Channel

Spectre: Exploiting timing channels to leak data [1]

[1] Kocher et al., Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

Application A

Hardware

Application B

Timing Channel

Wistoff et al. | APPLEPIES | 2024-09-20 3

Application A
secret s

Application B

Spy

security
boundary

Supervisor (OS)

Hardware

Microarchitectural State

Indirectly modify
depending on

secret

Measure
execution

time 0 1 2 3 4 5

Secret

Partition shared HW

no channel

Temporal fence instruction (fence.t): Clear μArch [2]

Wistoff et al. | APPLEPIES | 2024-09-20 4

Arb FIFOPLRU PLRU LFSRLFSR

clear

Microarchitectural state:
Not directly visible or

modifiable by SW.
Cleared by fence.t

Architectural state:
Not cleared by fence.t

CVA6: 6-stage, in-
order RV64GC core

Can we implement fence.t
in OoO cores?

What are the performance
implications for OoO?

[2] Wistoff et al., Systematic Prevention of On-Core Timing Channels by Full Temporal Partitioning, IEEE Trans. Comp. 2023

Contributions

• We show that adding fence.t to out-of-order (OoO) cores comes with new
challenges

• We present the SW-supported temporal fence (fence.t.s) to address
these challenges.

• We implement fence.t.s in a fully-featured, open-sourced, commercial,
high-performance 64-bit RISC-V core, namely OpenC910.

• We show that fence.t.s closes all on-core timing channels in OpenC910
without measurable HW overhead at a performance overhead of 1.0 %.

Wistoff et al. | APPLEPIES | 2024-09-20 5

T-Head OpenC910 [3]
• T-Head Semiconductor Co., Ltd.

• 64-bit, application-class, 12-Stage, superscalar, Out-of-
Order, RISC-V RV64GCXtheadc core.

• Verilog RTL open-sourced in 2021 under the Apache license.

Wistoff et al. | APPLEPIES | 2024-09-20 6

[3] Chen et al., Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit
High Performance RISC-V Processor with Vector Extension, ACM/IEEE ISCA 2020

github.com/XUANTIE-RV/openc910

Operating Frequency 2.0-2.5 GHz (12nm FinFET)

Pipeline stages 12

ROB up to 192 instructions

Decode width 3

Issue width/FUs 8

[3]

[3]

[3]

Challenge 1: Mixed state

Wistoff et al. | APPLEPIES | 2024-09-20 7

x1

x2

x3

x4

p4

p2

p0

p4

p0

p1

p2

p3

[x3]

[x2]

p4

p5

[x1], [x4]

Register Allocation
Table (RAT)

Physical Register File (PRF)

Cannot be directly accessed
by SW
→ Microarchitectural state
→ clear on temporal fence

Registers contain
architectural state
→ keep on temporal
fence

Challenge 1: Mixed state

Wistoff et al. | APPLEPIES | 2024-09-20 8

Register Allocation
Table (RAT)

Physical Register File (PRF)

x1

x2

x3

x4

p0

p1

p2

p3

[x3]

[x2]

p4

p5

[x1], [x4]

Cannot be directly accessed
by SW
→ Microarchitectural state
→ clear on temporal fence

Registers contain
architectural state
→ keep on temporal
fence

clear

Problem: Where to find
our architectural state?

Solution 1: Save context before clearing

Wistoff et al. | APPLEPIES | 2024-09-20 9

[x1]

[x2]

[x3]

[x4]

Step 1: Save architectural
registers in main memory

Main MemoryPhysical Register File (PRF)Register Allocation
Table (RAT)

x1

x2

x3

x4

p4

p2

p0

p4

p0

p1

p2

p3

[x3]

[x2]

p4

p5

[x1], [x4]

Solution 1: Save context before clearing

Wistoff et al. | APPLEPIES | 2024-09-20 10

x1

x2

x3

x4

p0

p1

p2

p3

p4

p5

Register Allocation
Table (RAT)

Physical Register File (PRF)

[x1]

[x2]

[x3]

[x4]

Main Memory

Step 1: Save architectural
registers in main memory

Step 2: Clear all state
including RAT and PRF

clear

Solution 1: Save context before clearing

Wistoff et al. | APPLEPIES | 2024-09-20 11

x1

x2

x3

x4

p0

p1

p2

p3

p0

p1

p2

p3

[x1]

[x2]

[x3]

[x4]

p4

p5

Register Allocation
Table (RAT)

Physical Register File (PRF)

[x1]

[x2]

[x3]

[x4]

Main Memory

Step 1: Save architectural
registers in main memory

Step 3: Load architectural
registers from main memory

Step 2: Clear all state
including RAT and PRF

RAT state is now
history-independent!

Challenge 2: Reusability of Instructions

• One monolithic temporal fence instruction has several disadvantages

• No reuse of the implemented mechanisms.

• No fine-grain control over which components to clear (security-performance tradeoff).

• Complex control logic.

• Solution: Split temporal fence into multiple instructions.

Wistoff et al. | APPLEPIES | 2024-09-20 12

SW-supported temporal
fence (fence.t.s) for all r ∈ ArchRegs do

stack ← r
end for

scratch ← sp

ClearL1D

InvalSRAMs

ClearFFs

sp ← scratch

for all r ∈ ArchRegs do
r ← stack

end for

PadTime

Save architectural registers
to main memory

Save stack pointer to a well-
known, protected location Write back

dirty L1D state
Invalidate SRAMs

Clear flip-flopsRestore stack pointer

Restore architectural registers

Pad execution time to prevent
leakage through context-
switch latency

fence.t.s in OpenC910
for all r ∈ ArchRegs do

stack ← r
end for

scratch ← sp

ClearL1D

InvalSRAMs

ClearFFs

sp ← scratch

for all r ∈ ArchRegs do
r ← stack

end for

PadTime

addi sp, sp, -31*8
csrw sscratch, sp
sd x1, 0*8(sp)
…
sd x31, 30*8(sp)

Standard RISC-V

dcache.call
li t0, 0x70011
csrs mcor, t0

XtheadcXtheadc

la t0, post_ff_clr
csrw mrvbr, t0
sync.i
ff.clr
post_ff_clr:
sync.i

Xtheadc

New instruction:
Clear all on-core
FFs except CSRs

csrr sp, sscratch
ld x1, 0*8(sp)
…
ld x31, 30*8(sp)
addi sp, sp, 31*8

Standard RISC-V

Experimental setup

Wistoff et al. | APPLEPIES | 2024-09-20 15

VCU128 FPGA

DRAM

JTAG to
AXI

UART A
X

I

OpenC910

Coherence
Interface Unit

L2

Core 0 CLINT

PLIC

HW Platform

+

OS

Channel bench [4]

+

Application

N = 106

M = 4283 mb
M0 = 0.7 mb

Characterises
noise

[4] Ge et al., No security without time protection: We need a new hardware-software contract, ACM APSys 2018

fence.t.s closes all timing channels!

Wistoff et al. | APPLEPIES | 2024-09-20 16

M = 4283 mb, M0 = 0.7 mb M = 5940 mb, M0 = 0.8 mb M = 698.8 mb, M0 = 1.1 mb

M = 3.3 mb, M0 = 6.4 mb M = 3.2 mb, M0 = 3.5 mb M = 64.3 mb, M0 = 71.0 mb

L1D L1I BHT
u

n
m

it
ig

at
ed

f
e
n
c
e
.
t
.
s

fence.t.s is inexpensive!

• 2 threads: 1 benchmark + 1 idle

• 1GHz system clock

• 10ms timeslice

• Context switch every 10M cycles

• Synthesis in GF12 LP+
FinFET @2GHz

Wistoff et al. | APPLEPIES | 2024-09-20 17

Negligible
hardware costs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Splash-2 Benchmark Overhead (%)

Average 1.0%
overhead

Conclusion

• We presented the SW-supported temporal fence (fence.t.s) methodology
to close timing channels even in high-performance out-of-order cores.

• We showed that fence.t.s can reliably close all observed timing channels in
OpenC910.

• We showed that fence.t.s comes at a negligible HW overhead and a
minimal performance overhead of 1.0 %.

• We found that OpenC910 already provides most mechanisms hat are required
to enable time protection. Specifying them would enable time protection across
implementations.

Wistoff et al. | APPLEPIES | 2024-09-20 18

uSC SIG
Timing Fences TG

Q&A

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Institut für Integrierte Systeme – ETH Zürich
Gloriastrasse 35
Zürich, Switzerland

DEI – Università di Bologna
Viale del Risorgimento 2
Bologna, Italy

Nils Wistoff nwistoff@iis.ee.ethz.ch
Gernot Heiser gernot@unsw.edu.au
Luca Benini lbenini@iis.ee.ethz.ch

Case study: T-Head OpenC910 Xtheadc extension
• Custom instructions:

• dcache.call: clear the L1 data cache.

• sync.i: execution barrier in the instruction stream.

• …

• Custom control and status registers (CSRs):

• mcor: invalidate selected SRAMs in the core.

• mrvbr: reset address.

• …

Wistoff et al. | APPLEPIES | 2024-09-20 20

[3] Chen et al., Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with
Vector Extension, ACM/IEEE ISCA 2020

github.com/XUANTIE-RV/openc910

