

Spatzformer: Reconfigurable Dual-Core RVV Cluster for Mixed Scalar-Vector Workloads

Matteo Perotti¹, Michele Räber¹, Mattia Sinigaglia², Matheus Cavalcante¹, Davide Rossi², Luca Benini^{1,2}
¹ETH Zurich, Switzerland; ²University of Bologna, Italy

The first two authors contributed equally to this work

1 Introduction

Hard to achieve high utilization on mixed scalar-vector workloads

The scalar sequential routines under-utilize the resources of flexible multi-core vector architectures targeting parallel workloads

RISC-V is an open-source ISA for general-purpose processors.

Its **vector extension** V helps speed up vector operations, especially on parallel regular workloads.

The open-source RISC-V V dual-core Spatz cluster¹ can flexibly accelerate parallel computation and execute multiple tasks at once.

How to **improve** its **performance** on **mixed scalar-vector** workloads?

2 Contributions

Spatzformer – Reconfigurable RISC-V V multi-core cluster

Boost scalar-vector workloads performance with negligible area cost

PPA analysis of the cost of the reconfigurability feature

Implement Spatzformer vector architecture in 12-nm technology

3 Implementation

Dual-core Spatzformer can be reconfigured at runtime in one of two modes

- Split mode each Snitch scalar core controls a Spatz vector accelerator. The architecture works as a vector dual-core cluster
- Merge mode one Snitch controls both Spatz vector accelerators.
 The remaining Snitch can execute scalar tasks independently

Hardware modifications to Spatz to support reconfigurability

4 Results and Discussion

Experiment Setup

- Physical implementation of Spatzformer targeting 12-nm technology
- Comparison against Spatz cluster
- Simulation of multiple kernels for performance and energy-efficiency evaluation
- Performance evaluation of mixed vector (various kernels) and scalar (coremark) workloads

Minimal area cost

The reconfigurability feature incurs in only +1.4% area overhead.

Instead, adding a dedicated additional scalar core would have costed 4x more area.

Lower scalar core power

Spatzformer's merge mode power reduction:

- Independent scalar core
- i-Cache with fewer instructions fetched thanks to longer vectors

Performance, Efficiency

- No maximum frequency degradation
- MM faster FFT
 (avoid software sync)
- MM 1.8x average speed-up on mixed vector-scalar workloads

5 Conclusion

Spatzformer - Reconfigurable RISC-V V architecture

- Change configuration at runtime (split or merge mode)
- Accelerate mixed scalar-vector workloads by 1.8x
- Speed up sw-synchronized kernels (FFT) by up to 20%
- No frequency drop and negligible area (+1.4%) and efficiency (-5%) cost