

Open-source SoC design using PULP

Austrochip 2025, Linz

Frank K. Gürkaynak kgf@iis.ee.ethz.ch

PULP PlatformOpen Source Hardware, the way it should be!

Team of 100 people in ETH Zürich – University of Bologna

Research on open-source energy-efficient computing

In 12 years PULP team has designed more than 60 chips

What I want to share today

Why open source?

Managing complexity, Collaboration, Exploitation, Education

A sample of our projects

• Croc, Cheshire, Kraken, Occamy, Picobello

What is next for open-source hardware

Challenges and opportunities

Why open source?

- Managing complexity
- Collaboration
- Exploitation
- Education

In the last 20 years IC Design has changed a lot

80 MGE

What used to be a complete chip is now a small part of a SoC!

There is so much that makes up a modern SoC

User-Space Software

Kernel-Space Software

Hardware

HETEROGENEOUS APPLICATION

ACCELERATED KERNEL

VIRTUAL MEMORY MANAGEMENT LIBRARY

HW ABSTRACTION LIBRARY

HOST DOMAIN RISC-V core **PULP CLUSTER** L1 SPM L2 SPM MMU I\$ D\$ Mem Mem Mem Mem Mem **AXI** interconnect Interconnect RV RV RV LLC + Mem ctrl 1/0 HW **DMA** 32 32 32 ACC **Ext Mem SENSORS** IŚ

In a typical design, innovation is only in a limited scope

User-Space Software

Kernel-Space Software

Open-source silicon-proven IPs helps concentrate work where it counts

Hardware

All of our designs are open-source hardware

- All our development is on GitHub using a permissive license
 - HDL source code, testbenches, software development kit, virtual platform

https://github.com/pulp-platform

Allows anyone to use, change, and make products without restrictions.

What PULP provides is a box of building blocks

Single core

- Croc, PULPissimo
- Cheshire

- OpenPULP
- **ControlPULP**

- Hero, Carfield, Astral
- Occamy, Mempool

Accelerators and ISA extensions

XpulpNN, **XpulpTNN**

ITA (Transformers) **RBE, NEUREKA** (QNNs)

FFT (DSP)

REDMULE (FP-Tensor)

How does PULP collaborate with 3rd parties?

Diverse set of open source based industry collaborations

GF22 (2018)

Arnold

eFPGA coupled with a RISC-V microcontroller.

In one year from agreement to actual tapeout

GF22 (2022)

Marsellus

Heterogeneous IoT processor
With Aggressive voltage scaling

DILIPHIN

Permissive open-source licensing key to our industrial relationships

Siracusa

SoC for Extended Reality visual processing

Carfield

Open-Research platform for safety, resilient and time-predictable systems

And many continue to use our work for their research

ISA	RV64GC
Execution	Out-of-order
L1I	16kB/core, 4-way
L1D	8kB/core, 4-way
NoC	64b 2D Mesh
L2 LLC	512kB, 4-way
LLC BW1GHz	1.0 Tb/s
CNC Area Overhead	1.4%
#CNC MACs	128
CNC RF	1kB/slice
Energy Eff. 0.6 V	285 GOPS/W
LLC Energy Eff. 0.6V	1.6 TOPS/W

VLSI Symposium 2022

AutoDMP: Automated DREAMPlace-based Macro Placement

Anthony Agnesina aagnesina@nvidia.com NVIDIA Corporation Austin, TX, USA

Austin Jiao ajiao@nvidia.com NVIDIA Corporation Santa Clara, CA, USA Puranjay Rajvanshi prajvanshi@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

Ben Keller benk@nvidia.com NVIDIA Corporation Santa Clara, CA, USA Tian Yang tiyang@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

Brucek Khailany bkhailany@nvidia.com NVIDIA Corporation Austin, TX, USA Geraldo Pradipta gpradipta@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

Haoxing Ren haoxingr@nvidia.com NVIDIA Corporation Austin TX JISA

Some smaller companies you might have heard of ©

ISSCC Keynote 2020 – Nature 2020

Fig. 4: Convergence plots on A-lane RISC V CPU. Recommend only for a bolick of Arisms RISC V CPU. Recommend on the fraining a policy network more scarch versus fine tuning a pre-trained policy network for a block of Arisms RISC V CPU.

Figure 7: Pre-CTS placements of the logical groups and cell densities of the MemPool Group designs using NanGate 45nm process (freq. - 333 MHz, density - 68%). Congestion (H/Y): Innovus (2.66%/1.54%), AutoDMP (3.48%/1.86%).

ISPD'23

We rely more and more on open-source HW for teaching

- Open source RTL is standard for all student projects
 - Our research projects have been based on open source RTL anyway
 - Legal aspects: In CH we need the *permission* of students to make their code openly available
- Open source EDA and PDK allows exercises to be transferred anywhere
 - We can share our exercises with others
 - No need to rely on costly infrastructure to provide students a place to run exercises

Thanks to the great IIC-OSIC tools from JKU

and the open-source PDK from IHP

At ETHZ, IC Design teaching now uses open source HW

In Spring 2025, our IC Design course switched to (mostly) open source

- Using IHP 130, Yosys and OpenROAD
 - Parts for backannotated simulation, test pattern generation, DRC/LVS, still use proprietary tools
 - Will be gradually replaced by open tools

https://vlsi.ethz.ch

Project based grading

- Students (in groups of two) will have to modify the Croc reference design
- Best five designs will be taped-out

72 students enrolled

- Projects finished in summer
- Taped-out 5 designs in IHP130

And the students delivered: 33 valid designs, 5 taped-out

A sample of our projects

- Croc
- Cheshire
- Kraken
- Occamy
- Picobello

Croc our end-to-end open SoC for teaching and training

- Scalable ULP design
- 32-bit RISC-V Core
 - Complete SoC
 - Simple "Raspberry Pi"
- Rich Peripherals
- Ready for Acceleration
 - Digital-only interface
- Silicon-proven
 - Tapeouts with open & commercial EDA

CVA6 (aka Ariane): The standard 64bit core

P U

- Open-source 64-bit application-class RISC-V processor
- Boots Linux
- Developed by PULP team at ETH Zürich (as "Ariane")
- Now owned and maintained by OpenHW Group
- Widely used in academia and industry

RTL Simulation

https://github.com/openhwgroup/cva6

CVA6: Many optional features added over time

PU

- XLEN 32/64 bits (RV32/RV64)
- WB/WT/HPDcache L1 data cache
- Embedded/application class (MMU, U/S mode)
- Vector extension (V)
- Hypervisor extension (H)
- Code-size extensions (Zcb, Zcmp)
- Bit-manip extensions (Zba, Zbb, Zbc, Zbkb Zbkx, Zbs)
- Scalar crypto extensions (Zknd, Zkne, Zknh)
- ECC support

ACE support

Fast interrupts (CLIC)

• ...

Cheshire SoC: A SoC around CVA6

Permissive licensed RTL from various groups

- PULP Platform (Cheshire, AXI, Hyperbus...)
- OpenTitan (SPI, I2C)
- OpenHW Group (CVA6 core)
- SpinalHDL (USB)

Architecture

- **RV64GC**-compliant CVA6 core
- Cheshire SoC provides vital peripherals
- 4-way 16KiB L1-D and L1-I cache
- 4-way 64KiB LLC / Scratchpad memory
- Hyperbus DRAM controller achieving transfer speeds up to 124MB/s

Meet Basilisk: Open RTL, Open EDA, Open PDK

- Designed in IHP 130nm OpenPDK
 - **34mm**² (6.25mm x 5.50mm)
 - ~5× larger than previous end-to-end OS designs
 - 2.7 MGE total, 1.14MGE logic
 - 24 SRAM macros (114 KiB)
 - **62MHz** at nominal voltage (1.2V)
- RV64GC design runs Linux
- Active collaboration with

github.com/pulp-platform/cheshire-ihp130-o

Basilisk is a complete Linux-capable SoC

- 64-bit RISC-V core
- Rich peripherals:
 - HyperRAM controller @154MB/s
 - C2C AXI-Link @77MB/s
- Automatic boot via scratchpad

arxiv.org/pdf/2505.10060

Our research focus: cluster-based many-core accelerators

Multiple Scales of acceleration

Extensions to processor cores

- Explore new extensions
- Efficient implementations

Shared-memory Accelerators

- Domain specific
- Local memory

Multiple Decoupled Accelerators

- Communication
- Synchronization

High-speed on-chip interconnect (NoC, AXI, other..)

RISC-V is a key enabler \rightarrow max agility, enabling SW build-up, without vendor lock-in

2013: Perf. + Efficiency + Flexibility ← Parallelism

- As VDD decreases, operating speed decreases as well.
- However efficiency increases > more work done per Joule
 - Until leakage effects start to dominate
- More units in parallel
 - Get performance up (if you can keep them busy)
 - Energy efficiency stays high!

N cores running at moderate f, low Vdd are more energy efficient than a single core at N×f, high Vdd

PULP Paradigm: Multiple Cores (2-16)

efficient DSPs (CV32E40P) simple in-order 4-stage pipeline with RISC-V ISA + DSP extensions (xPULP)

RISC-V core RISC-V core

RISC-V core

RISC-V core

CLUSTER

PULP Paradigm: Low-Latency Shared TCDM

PULP Paradigm: DMA and I\$ to talk with ext. memory

PULP Paradigm: The cluster accelerates a host system

PULP is a template for heterogeneous parallel SoCs

Kraken: Multiple Heterogeneous Accelerators

P U

The Kraken: an "Extreme Edge" Brain

- RISC-V Cluster
 (8 Cores + 1)
- CUTIE
 Dense ternary neural network accelerator
- SNE
 Energy-proportional spiking neural network accelerator

Technology	22 nm FDSOI
Chip Area	9 mm ²
SRAM SoC	1 MB
SRAM Cluster	128 KB
VDD range	0.55 V - 0.8 V
Cluster Freq	~370MHz
SNE Freq	~250MHz
CUTIE Freq	~140MHz

[Di Mauro HotChips22]

Specialization in perspective

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead

Energy-Efficient RV Core → 20pJ (8bit)

ISA-based $10-20x \rightarrow 1pJ$ (4bit)

XPULP

Configurable DP 10-20x \rightarrow 100fJ (4bit)

RBE

Highly specialized DP $100x \rightarrow 1fJ$ (ternary)

CUTIE, SNN

Fully Open-Source Deployment Flow!

Where do we go from here: Scale-Up vs. Scale-Out

Scale-up

Increase the number of PEs in a cluster

of PFs tightly counled

Cluster: A group of PEs tightly coupled with a shared L1 memory through low-latency interconnect

Scale-out

Increase the number of parallel Clusters

Achieving Scale through Hierarchical Design

Snitch Core

Snitch Cluster

Occamy Group

Occamy System

Occamy Chiplet

Occamy Chiplet: Six Groups with HBM and D2D Link

6 fully connected groups

- 24 clusters, 216 cores total
- 512b data, 64b for messages interconnect
- **Autonomous 64b host domain**
 - CVA6 RV64GC Linux-capable core
 - Rich peripherals (SPI, I2C, UART...)
- 16 GiB, 410 GB/s HBM2E
 - Optional page-level interleaving
- 12.8 GiB/s die-to-die link
 - Fully digital and fault-tolerant

github.com/pulp-platform/snitch_cluster ()

Addressing interconnect scalability

AXI interconnect was very challenging for PD

- AXI has severe scalability issues
- Top-level Xbar had to be split up
- Still, interconnect takes up almost 40%*

Working on NoC solution, FlooNoC

- Fully AXI4 compatible
- Solves AXI4 scalability issues
- Designed with awareness of physical design?
- Wide & physical channels

*HBM & C2C excluded

FLOONOC

Picobello Next generation many-core architecture in 7nm

- 64bit host
 - Linux capable CVA6
- 16 clusters
 - 9x Snitch (RV32) cores with Sparse SSRs
 - MatrixMul
- 8 MB L2 memory
- FlooNoc interconnect
- Taped out in Aug 2025

What is next for open-source hardware

- Challenges
- Opportunities

End-to-end Open-Source IC Design is possible today!

Design: from PULP

github.com/pulp-platform

Tools: from Johannes Kepler University (JKU)

Reliable VM with large collection of open-source tools

github.com/iic-jku/IIC-OSIC-TOOLS

Manufacturing: IHP130nm

github.com/IHP-GmbH/IHP-Open-PDK

End-to-end Open-Source allows sharing of design data

Closing the PPA gap to commercial EDA

Yosys-slang full Sysverilog Frontend: @ <6sec runtime (from minutes)

Yosys synthesis: 1.1 MGE (1.6×) @ 77 MHz (2.3×), 2.5× less runtime, 2.9× less RAM

OpenROAD P&R: tuning -12% die area, +10% core utilization

Yes but why? Specialization + EDA multiplicative effect!

Precision tuning – OP/Mem tuning - deep arithmetic optimization – operand network tuning...

Co-Specialize SW, HW, EDA & Technology is the frontier

Open EDAs Heterogeneous Chips in Advanced CMOS?

Extreme Performance + Energy Efficiency is required!

On the Horizon: **SeyrITA** – GF22 with Open-Source Tools

- RISC-V Linux host platform
- Transformer accelerator
- o Targeting BERT, mobileBERT, DEiT-T
- Leveraging microscaling quantization
- MXINT and MXFP32 formats
- 10x larger!
- 20-40MGE (SeyrITA) vs 2-3MGE (Basilisk)
- 500MHz target frequency
- 1-2TFLOP/s

On the Horizon: SeyrITA – Top Level

On the Horizon: SeyrITA – Working on the Tapeout

- Demonstrate a large 22nm tapeout with open-source tools
- Improve tools and close the performance gap
- Identify and implement missing features along the way
- Active Collaboration with

Snitch cluster floorplan exploration

Open PDKs are key to success of open source HW

We need more open PDKs

- Something in the 65nm 28nm range would be a game changer
- Drafted an open letter to raise awareness with 300+ signatures

https://open-source-chips.eu/

- One possible avenue open Proxy PDKs for a selected technology
 - A PDK that is not the same as the original PDK, developed independently and openly.
 - But designs made using this proxy PDK could be translated to be manufactured using the original PDK through a service center.
 - Important: We need to ensure that the technology provider is not 'against' this idea
 - better yet is supportive
 - This will be tricky, but we think it is doable.

Next steps: **ODE4EC** is an opportunity

ODE4EC proposal

- Three sub projects: Digital, Analog, Productivity
- HORIZON-JU-CHIPS-2025-IA-EDA-two-stage proposal,
 - PO stage passed,
 - FPP submitted 19th of September!

Austria has major parts in the proposal

- JKU, Yosys are vital parts of the open source HW developments
- We need national co-funding in Austria to make all parts of the proposal supported

If accepted funding will start April/May 2026

- IHP, JKU, ETHZ will have major parts
- And work together with other partners

Finally, let's not forget the Austrian colleagues of PULP

Austrochip

Our WWW page contains a wide collection of talks/papers &

PULP Platform Resources - Projects - About - FAQ Privacy Policy Contact

Most of our talks: https://pulp-platform.org/conferences.html

RI5CY CV32E	3.22	Snitch	Spatz	Ariane CVA6	ARA	JTAG	SPI	LIC	нсі
						UART	125	АРВ	FlooNoC
RV32	RV32	RV32	RVV	RV64	RVV	DMA	GPIO	AXI4	

And most of our papers: https://pulp-platform.org/publications.html

VLSI-SoC 2024 in Tangier.

28 August 2024

Luca Benini received the 2024 TCMM Open Source Hardware Contribution Award for his work on the PULP platform. The award was presented at Hot Chine 2024

The future of open-source HW is bright

