
Dual-Issue Execution of Mixed Integer
and Floating-Point Workloads on 

Energy-Efficient In-Order RISC-V Cores
Luca Colagrande, Luca Benini



Introduction



Context

• Many-core general-purpose accelerators

• Built from arrays of slimmed-down, area- and energy-efficient processors 

• Typically, scalar in-order cores

3



Motivation

• Few of these propose cores with (limited) multiple-
issue capabilities

• Nvidia Turing implements concurrent execution of 
FP32 and INT32 operations

• +36% throughput, across several gaming workloads [1]

• Undisclosed design, closed-source implementation

4[1] J. Burgess, “Rtx on—the nvidia turing gpu,” IEEE Micro, vol. 40, no. 2, pp. 36–44, 2020.



Background

• Snitch [2]

• Tiny, single-issue in-order RV32I core
• Coupled to a “D” extension capable FPU

• Xfrep extension: zero-overhead loop (ZOL) buffer 
for FP instructions

• Pseudo dual-issue execution

• Regular instruction fetch in RV32I core

• Simultaneously, FP instruction issue from ZOL buffer

5

[2] F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Snitch: A tiny pseudo dual-issue processor for area and 

energy efficient execution of floating-point intensive workloads,” IEEE Transactions on Computers, vol. 70, 

no. 11, pp. 1845–1860, 2021.



• Concurrent integer and FP threads

• Constraints

• Fully asynchronous threads, no synchronization

• Fully independent threads, no memory consistency

• Threads should access exclusive resources

• Integer thread accesses integer RF, exclusively

• Floating-point thread accesses FP RF, exclusively 

Background

6



• Instructions accessing both integer and 
FP RF disallowed

• FP comparisons (FEQ.*, FLT.*, FLE.*, 
FCLASS.*)

• FP load/stores, conversions and moves 
(FLD, FSD, FCVT.*.*, FMV.*.*)

• Dual-issue execution of mixed-integer-
FP kernels unsupported

• e.g. transcendental functions (exp, log), 
Monte Carlo, etc.

Background

7



• Enable cooperation of parallel integer and FP threads

• Support dual-issue execution of mixed-integer-FP kernels

Goal

8

COPIFT: Co-Operative Parallel Integer and Floating-point Threads



Implementation



• Exponential of a vector

• Found e.g. in softmax

Example

10



Example

11



Example

12



Example

13



Example

14



Example

15

• FP phases 0 and 2 are mapped to FREP loops

• Execute in parallel with integer phase 1

• No communication and synchronization within 
blocks

• Explicit communication and synchronization across 
blocks

• Details omitted from presentation for brevity

• Step 6

• Minor ISA extensions to broaden COPIFT scope



Evaluation



1 Implementation using Fusion Compiler in GlobalFoundries 12LP+ FinFET technology, with a 1GHz target clock frequency.
2 From cycle-accurate RTL simulation in QuestaSim 2023.4.
3 Switching activities extracted from post-layout simulation and used for power estimation in PrimeTime, assuming typical 

operating conditions of 25°C and 0.8V.

Results

17

• Negligible area and timing overheads due to 
our ISA extensions 1

• Benchmarks: expf and logf functions and a 
few sample Monte Carlo integration kernels

• Geomean 1.47x speedup, peak 1.75 IPC 2

• Geomean 1.37x increase in energy 
efficiency, peak 1.93x on expf 3



Conclusion



Contributions

19

• We develop COPIFT, a generic methodology to enable dual-issue execution
of mixed-integer-FP workloads on energy-efficient cores

• We implement COPIFT-accelerated transcendental function and MC codes

• Measuring a geomean 1.47x speedup, 1.37x energy efficiency improvement 
and a peak IPC of 1.75

• Demonstrating that effective dual-issue execution of mixed-integer-FP 
workloads is possible on area- and energy-efficient in-order cores

• All code is open source and performance experiments are reproducible using 
free software [3]

[3] https://github.com/colluca/snitch_cluster/tree/copift

https://github.com/colluca/snitch_cluster/tree/copift

