
PULP PLATFORM
Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform

Luca Benini
<lbenini@iis.ee.ethz.ch,luca.Benini@unibo.it>

Prof. of Digital Circuit and Systems
@ ETHZ and UNIBO. h-index=109,
53’000+ citations, 1’000+
publications, fellow IEEE, ACM,
Chief Architect in STMicroelectronics
(2009-2012) Group of 80+ people

In-Sensor Machine Learning
Heterogeneous computing in a mW

|

Cloud à Edge àNear-Sensor AI a.k.a. TinyML

2

Latency
(msec and below)

Near-Sensor AI challenge
AI capabilities in the power
envelope of an MCU:
100mW peak (10mW avg)

AVERAGE
CAGR
27.3%

LOGISTICS

$28BN

SMART
CITIES/

BUILDING

$12BN

MANUFACTURING /
INDUSTRIAL AUTOMATION

$22BN

RETAIL

$8BN

70B$ in 5Y

E. Gousev, Qcomm research

|

AI Workloads - DNNs

High OP/B ratio
Massive Parallelism
MAC-dominated
Low precision OK

3

Model redundancy

H Pham 2021(Google) arXiv:2003.10580v3

90.2%, 480M-param, many GOPS

5M-param

70%, “Tiny” DNNs

|

Energy efficiency @ GOPS is THE Challenge

4

High performance MCUs

Low
-P

ow
er M

C
U

s

J Pineda, NXP + Updates

1pJ/OP=1TOPS/W

InceptionV4 @1fps in 10mW

How??

|

RI5CY – An Open MCU-class RISC-V Core for EE-AI

5

RISC-V à V1

V2
V3

HW loops
Post modified Load/Store
Mac

V2

SIMD 2/4 + DotProduct + Shuffling
Bit manipulation unit
Lightweight fixed point

V3

Baseline RISC-V RV32IMC (not good for ML)V1

XPULP extensions: 25 kGE à 40 kGE (1.6x)

ISA is extensible by construction (great!)

3-cycle ALU-OP, 4-cyle MEM-OPàIPC loss: LD-use, Branch

40 kGE
70% RF+DP M/D

ALU

RF

|

PULP-NN: Xpulp ISA exploitation

6

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

8-bit ConvolutionRV32IMC

Pooling & ReLu
HW loop
LD/ST with post-increment
8-bit SIMD max, avg INSNS

LD/ST with post
increment

HW Loop

8-bit SIMD sdotp

RV32IMCXpulp

N N/4 lp.setup
addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
end

lp.setup
p.lw w1, 4(a0!)
p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
end

lp.setup
p.lw w1, 4(a0!)
p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
pv.sdotsp.b s1, w1, x1
pv.sdotsp.b s2, w1, x2
pv.sdotsp.b s3, w2, x1
pv.sdotsp.b s4, w2, x2
end

9x less
instructions

than RV32IMC

P↑ T↓↓↓ so, E=P*T↓↓ Nice!
But what about the GOPS?
Faster+Superscalar is not efficient!

M7: 5.01 CoreMark/MHz-58.5 µW/MHz
M4: 3.42 CoreMark/MHz-12.26 µW/MHz

|

Optimum
point

Better to have N× PEs running at
optimum Energy than 1 PE running

fast at low Energy efficiency

ML & Parallel, Near-threshold: a Marriage Made in Heaven
§ As VDD decreases,

operating speed decreases

§ However efficiency
increasesà more work
done per Joule

§ Until leakage effects start
to dominate

§ Put more units in parallel
to get performance up and
keep them busy with a
parallel workload

ML is massively parallel
and scales well
(P/S á with NN size)

7

|

Multiple RI5CY Cores (1-16)

CLUSTER

RISC-V
core

RISC-V
core

RISC-V
core

RISC-V
core

8

|

Low-Latency Shared TCDM

9

CLUSTER

Logarithmic Interconnect

RISC-V
core

RISC-V
core

RISC-V
core

RISC-V
core

Tightly Coupled Data Memory BF=2

Mem0 Mem1 Mem3Mem2

Mem4 Mem5 Mem7Mem6

|

DMA for data transfers from/to L2

CLUSTER

in
te

rc
on

ne
ctL2

Mem

Logarithmic Interconnect

RISC-V
core

DMA

RISC-V
core

RISC-V
core

RISC-V
core

10

Tightly Coupled Data Memory BF=2

Mem0 Mem1 Mem3Mem2

Mem4 Mem5 Mem7Mem6

|

Shared instruction cache with private “loop buffer”

CLUSTER

in
te

rc
on

ne
ctL2

Mem

Logarithmic Interconnect

RISC-V
core

DMA

RISC-V
core

RISC-V
core

RISC-V
core

II I$ I$

11

Tightly Coupled Data Memory BF=2

Mem0 Mem1 Mem3Mem2

Mem4 Mem5 Mem7Mem6

|

Results: RV32IMCXpulp vs RV32IMC
§ 8-bit convolution

§ Open source DNN library

§ 10x through xPULP
§ Extensions bring real speedup

§ Near-linear speedup
§ Scales well for regular workloads.

§ 75x overall gain
§ Sub-byte: x2-4x better
§ Mixed precision supported

Near-Linear
Speedup

Overall Speedup of 75x

10x Speedup w.r.t.
RV32IMC

(ISA does matterJ)

12

|

An additional I/O controller is used for IO

CLUSTERPULPissimo

in
te

rc
on

ne
ctL2

Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

All this is Open Source HW – PULP open
13

|

Successful product development: GWT’s GAP8

14

2017: GAP-8 55nm (TSMC): 50 MOPS/mW (20pJ/OP @32bit 3.5GOPS)

2018: Wolf(8) 40nm (TSMC): 120 MOPS/mW (8pJ/OP @32bit +FP 7GOPS)

2019: Vega(8) 22FDX: 500 MOPS/mW (2pJ/OP @32bit, +FP, 10GOPS)

2020: Marsellus(16) 22FDX: 500+ MOPS/mW (pre-tapeout, 30GOPS)

The evolution of the PULP species

https://greenwaves-technologies.com/product/gapuino/

2x
GOPS/W

Y/Y

|

Deploying DNNs on PULP

training

quantization & pruning

graph optimization

memory-aware deployment

optimized DNN primitives

optimized HW & architecture

specification & dataset selection

PULP

P

P

quantization & pruning

graph optimization

memory-aware deployment

optimized DNN primitives

optimized HW & architecture
PULP-NN
PULP Neural Network backend

NEMO
NEural Minimization for pytOrch

DORY
Deployment Oriented to memoRY

QuantLab
Quantization Laboratory

Automatic Mixed Prec

https://github.com/pulp-platform/nemo
https://github.com/pulp-platform/dory
https://github.com/pulp-platform/pulp-nn

15

https://github.com/pulp-platform/nemo
https://github.com/pulp-platform/dory
https://github.com/pulp-platform/pulp-nn

|

What’s next? Architecture: Sub-pJ/OP Accelerators

+ FFT, PCA, Mat-inv,…

16

Flexibility Needed!

|

Sub-pJ/W Accelerator; Tightly-coupled HW Compute Engine

CLUSTERPULPissimo

in
te

rc
on

ne
ctL2

Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

HWCE

Acceleration with flexibility: zero-copy HW-SW cooperation
17

|

HWPE wrapper

18

Address Generation

Register File
+ Control Logic

Interconnect

InterconnectDPath

Shared
Memory

Cores

Data plane

Control plane

Hardware Processing Engines (HWPEs)

HWPE efficiency
1. Specialized datapath (e.g. systolic MAC) & internal storage (e.g. linebuffer, accum-regs)
2. Dedicated control (no I-fetch) with shadow registers (overlapped config-exec)
3. Specialized high-BW interco into L1 (on data-plane)

|

More HWPE Efficiency: Extreme Quantization

19

Image Mapping (3x3, 5x5, 7x7)

Equivalent for 7x7 SoP

ImageBank

FilterBank

1 MAC Op = 2 Op (1 Op for the “sign-reverse”, 1 Op for the add).

Low(er) precision: 8à4à2
2.2% loss à 0% with 20% larger net

SOA INQ retraining

MULT à MUX

|

From +/-1 Binarization to XNORs

20

Conference’17, July 2017, Washington, DC, USA

The other popular approach is to drop the arithmetic precision of
weights or activations, to minimize the energy spent in their com-
putation. Up to now, this approach has proven to be very popular
on the algorithmic side: DoReFaNet [8], BinaryConnect [17], Bina-
ryNet [11] and XNOR-Net [12] have been proposed as techniques
to progressively reduce the precision of weights and activations by
quantizing it to less than 8 bits or outright binarizing it, at the cost
of retraining and loss of accuracy. More recently, methods such as
ABC-Net [18] and Incremental Network Quantization [19] have
demonstrated that low-precision neural networks can be trained
to an accuracy decreased < 5% with respect to the full precision
one. Naturally, this approach lends itself well to being implemented
in hardware. The Fulmine SoC [20] includes a vectorial hardware
accelerator capable of scaling the precision of weights from 16
bits down to 8 or 4 bits, gaining increased execution speed with
similar power consumption. Envision [15] goes much further: it em-
ploys dynamic voltage, frequency and accuracy scaling to tune the
arithmetic precision of its computation, reaching up to 10 Top/s/W.
YodaNN [21] drops the precision of weights to a single bit by target-
ing binary-weight networks (activations use “full” 12-bit precision),
and can reach up to 61 Top/s/W using standard cell memories to
tune down the operating voltage.

To reach the highest possible e�ciency, binary and ternary neu-
ral networks are perhaps most promising as they minimize the
energy spent for each elementary operation, and also the amount
of data transferred to/from memory, which is one of the biggest
contributors to the “real” energy consumption. One of the �rst ar-
chitectures to exploit these peculiarities has been FINN [22], which
is able to reach more than 200 Gop/s/W on a Xilinx FPGA, vastly
outperforming the state-of-the-art for FPGA-based deep inference
accelerators. Recent e�orts for the deployment of binary neural
networks on silicon, such as BRein [23], XNOR-POP [24], Conv-
RAM [25] and Khwa et al. [26] have mainly targeted in-memory
computing, with energy e�ciencies in the range 20-55 Top/s/W.
However, the advantage of this methodology is not yet clear, as
more “traditional” ASICs such as UNPU [27] can reach a similar
level of e�ciency of 50.6 Top/s/W. Mixed-signal approaches [28]
can reach 10⇥ higher e�ciency, with much steeper non-recurrent
design and veri�cation costs.

3 ARCHITECTURE
3.1 Binary Neural Networks primer
In binary neural networks, neural network inference can be mapped
to a sequence of convolutional and densely connected layers of the
form

y(kout) = binarize±1
©≠
´
bkout +

’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(1)

whereW, x y are the binarized (2 ±1) weight, input and output ten-
sors respectively; b is a real-valued bias; ⌦ is the cross-correlation
operation for convolutional layers and a normal product for densely
connected ones. binarize±1(·) combines batch normalization for in-
ference with a transformation from the integer-valued output of
the sum operation in Equation 2 into a binary value:

binarize±1(t) = sign
⇣
�
t � µ

�
+ �

⌘
(2)

for k_out in range(0, N_out):
for k_in in range(0, N_in):
for i in range(0, h_out):

for j in range(0, w_out):
y[k_out,i,j] = 0
for u_i in range(0, fs):
for u_j in range(0, fs):

y[k_out,i,j] += W[k_out,k_in,u_i,u_j]
* x[k_in,i+u_i,j+u_j]

Listing 1: Baseline loops of a BNN convolutional layer1.

where � , � , µ, � are the learned parameters of batch normalization.
A more convenient representation of the BNN layer can be ob-

tained by mapping elements of value +1 to 1-valued bits and those
of value �1 to 0-valued bits, and moving the bias into the binariza-
tion function. Equation 2 can be reorganized into

binarize0,1(t) =
(
1 if t � ��/� ⌘ � , else 0 (when � > 0)
1 if t  ��/� ⌘ � , else 0 (when � < 0)

(3)

where � ⌘ �/� , � ⌘ � +�/� (b � µ), and � ⌘ ��/� is a threshold de-
�ned for convenience in Section 3.3.3. Multiplications in Equation 1
can be replaced with XNOR operations, and sums with popcounting
(i.e., counting the number of asserted bits):

y(kout) = binarize0,1
©≠
´
’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(4)

3.2 XNE operating principles
The XNOR Neural Engine we propose in this work has been

designed to be able to execute both binarized convolutional and
binarized dense layers. Convolutional layers consist of six nested
loops on output featuremaps, input featuremaps, two output spatial
dimensions, and two �lter spatial dimensions; Listing 1 shows a
naïve implementation of a convolutional layer in Python pseudo-
code. Densely connected layers can be considered as a limit case
of the convolutional layer for a 1 ⇥ 1 �lter on a single pixel in the
spatial dimensions, i.e. h_out=w_out=fs=1.

In modern topologies [2][4], deeper convolutional layers have
N_out,N_in>h_out,w_out; in other words, layers become “less convolu-
tional” and more similar to densely connected layers. This leads
towards choosing an architecture where pixel- or feature map-level
parallelism is favoured over �lter-level parallelism (contrary to
designs based on sliding windows). This is particularly true for
BNNs, where energy e�ciency can be attained only by operating
on tens/hundreds of binary pixels in parallel – which cannot be
done with �lter-level parallelism on deeper layers.

A second fundamental consideration is that, since intermediate
values of the popcount operation are integer, it is highly preferable
to perform the operation of Equation 4 without storing them in
memory. In other words, the accelerator has to be weight- and
output-stationary [22] or input- and output- stationary. In the re-
mainder on this paper, we focus on the latter case, although the
XNE can arguably be used in both modes by swapping the roles of
weights and inputs.

1The * and += operators indicate XNOR and popcount-accumulation respectively.

Conference’17, July 2017, Washington, DC, USA

The other popular approach is to drop the arithmetic precision of
weights or activations, to minimize the energy spent in their com-
putation. Up to now, this approach has proven to be very popular
on the algorithmic side: DoReFaNet [8], BinaryConnect [17], Bina-
ryNet [11] and XNOR-Net [12] have been proposed as techniques
to progressively reduce the precision of weights and activations by
quantizing it to less than 8 bits or outright binarizing it, at the cost
of retraining and loss of accuracy. More recently, methods such as
ABC-Net [18] and Incremental Network Quantization [19] have
demonstrated that low-precision neural networks can be trained
to an accuracy decreased < 5% with respect to the full precision
one. Naturally, this approach lends itself well to being implemented
in hardware. The Fulmine SoC [20] includes a vectorial hardware
accelerator capable of scaling the precision of weights from 16
bits down to 8 or 4 bits, gaining increased execution speed with
similar power consumption. Envision [15] goes much further: it em-
ploys dynamic voltage, frequency and accuracy scaling to tune the
arithmetic precision of its computation, reaching up to 10 Top/s/W.
YodaNN [21] drops the precision of weights to a single bit by target-
ing binary-weight networks (activations use “full” 12-bit precision),
and can reach up to 61 Top/s/W using standard cell memories to
tune down the operating voltage.

To reach the highest possible e�ciency, binary and ternary neu-
ral networks are perhaps most promising as they minimize the
energy spent for each elementary operation, and also the amount
of data transferred to/from memory, which is one of the biggest
contributors to the “real” energy consumption. One of the �rst ar-
chitectures to exploit these peculiarities has been FINN [22], which
is able to reach more than 200 Gop/s/W on a Xilinx FPGA, vastly
outperforming the state-of-the-art for FPGA-based deep inference
accelerators. Recent e�orts for the deployment of binary neural
networks on silicon, such as BRein [23], XNOR-POP [24], Conv-
RAM [25] and Khwa et al. [26] have mainly targeted in-memory
computing, with energy e�ciencies in the range 20-55 Top/s/W.
However, the advantage of this methodology is not yet clear, as
more “traditional” ASICs such as UNPU [27] can reach a similar
level of e�ciency of 50.6 Top/s/W. Mixed-signal approaches [28]
can reach 10⇥ higher e�ciency, with much steeper non-recurrent
design and veri�cation costs.

3 ARCHITECTURE
3.1 Binary Neural Networks primer
In binary neural networks, neural network inference can be mapped
to a sequence of convolutional and densely connected layers of the
form

y(kout) = binarize±1
©≠
´
bkout +

’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(1)

whereW, x y are the binarized (2 ±1) weight, input and output ten-
sors respectively; b is a real-valued bias; ⌦ is the cross-correlation
operation for convolutional layers and a normal product for densely
connected ones. binarize±1(·) combines batch normalization for in-
ference with a transformation from the integer-valued output of
the sum operation in Equation 2 into a binary value:

binarize±1(t) = sign
⇣
�
t � µ

�
+ �

⌘
(2)

for k_out in range(0, N_out):
for k_in in range(0, N_in):
for i in range(0, h_out):

for j in range(0, w_out):
y[k_out,i,j] = 0
for u_i in range(0, fs):
for u_j in range(0, fs):

y[k_out,i,j] += W[k_out,k_in,u_i,u_j]
* x[k_in,i+u_i,j+u_j]

Listing 1: Baseline loops of a BNN convolutional layer1.

where � , � , µ, � are the learned parameters of batch normalization.
A more convenient representation of the BNN layer can be ob-

tained by mapping elements of value +1 to 1-valued bits and those
of value �1 to 0-valued bits, and moving the bias into the binariza-
tion function. Equation 2 can be reorganized into

binarize0,1(t) =
(
1 if t � ��/� ⌘ � , else 0 (when � > 0)
1 if t  ��/� ⌘ � , else 0 (when � < 0)

(3)

where � ⌘ �/� , � ⌘ � +�/� (b � µ), and � ⌘ ��/� is a threshold de-
�ned for convenience in Section 3.3.3. Multiplications in Equation 1
can be replaced with XNOR operations, and sums with popcounting
(i.e., counting the number of asserted bits):

y(kout) = binarize0,1
©≠
´
’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(4)

3.2 XNE operating principles
The XNOR Neural Engine we propose in this work has been

designed to be able to execute both binarized convolutional and
binarized dense layers. Convolutional layers consist of six nested
loops on output featuremaps, input featuremaps, two output spatial
dimensions, and two �lter spatial dimensions; Listing 1 shows a
naïve implementation of a convolutional layer in Python pseudo-
code. Densely connected layers can be considered as a limit case
of the convolutional layer for a 1 ⇥ 1 �lter on a single pixel in the
spatial dimensions, i.e. h_out=w_out=fs=1.

In modern topologies [2][4], deeper convolutional layers have
N_out,N_in>h_out,w_out; in other words, layers become “less convolu-
tional” and more similar to densely connected layers. This leads
towards choosing an architecture where pixel- or feature map-level
parallelism is favoured over �lter-level parallelism (contrary to
designs based on sliding windows). This is particularly true for
BNNs, where energy e�ciency can be attained only by operating
on tens/hundreds of binary pixels in parallel – which cannot be
done with �lter-level parallelism on deeper layers.

A second fundamental consideration is that, since intermediate
values of the popcount operation are integer, it is highly preferable
to perform the operation of Equation 4 without storing them in
memory. In other words, the accelerator has to be weight- and
output-stationary [22] or input- and output- stationary. In the re-
mainder on this paper, we focus on the latter case, although the
XNE can arguably be used in both modes by swapping the roles of
weights and inputs.

1The * and += operators indicate XNOR and popcount-accumulation respectively.

Conference’17, July 2017, Washington, DC, USA

The other popular approach is to drop the arithmetic precision of
weights or activations, to minimize the energy spent in their com-
putation. Up to now, this approach has proven to be very popular
on the algorithmic side: DoReFaNet [8], BinaryConnect [17], Bina-
ryNet [11] and XNOR-Net [12] have been proposed as techniques
to progressively reduce the precision of weights and activations by
quantizing it to less than 8 bits or outright binarizing it, at the cost
of retraining and loss of accuracy. More recently, methods such as
ABC-Net [18] and Incremental Network Quantization [19] have
demonstrated that low-precision neural networks can be trained
to an accuracy decreased < 5% with respect to the full precision
one. Naturally, this approach lends itself well to being implemented
in hardware. The Fulmine SoC [20] includes a vectorial hardware
accelerator capable of scaling the precision of weights from 16
bits down to 8 or 4 bits, gaining increased execution speed with
similar power consumption. Envision [15] goes much further: it em-
ploys dynamic voltage, frequency and accuracy scaling to tune the
arithmetic precision of its computation, reaching up to 10 Top/s/W.
YodaNN [21] drops the precision of weights to a single bit by target-
ing binary-weight networks (activations use “full” 12-bit precision),
and can reach up to 61 Top/s/W using standard cell memories to
tune down the operating voltage.

To reach the highest possible e�ciency, binary and ternary neu-
ral networks are perhaps most promising as they minimize the
energy spent for each elementary operation, and also the amount
of data transferred to/from memory, which is one of the biggest
contributors to the “real” energy consumption. One of the �rst ar-
chitectures to exploit these peculiarities has been FINN [22], which
is able to reach more than 200 Gop/s/W on a Xilinx FPGA, vastly
outperforming the state-of-the-art for FPGA-based deep inference
accelerators. Recent e�orts for the deployment of binary neural
networks on silicon, such as BRein [23], XNOR-POP [24], Conv-
RAM [25] and Khwa et al. [26] have mainly targeted in-memory
computing, with energy e�ciencies in the range 20-55 Top/s/W.
However, the advantage of this methodology is not yet clear, as
more “traditional” ASICs such as UNPU [27] can reach a similar
level of e�ciency of 50.6 Top/s/W. Mixed-signal approaches [28]
can reach 10⇥ higher e�ciency, with much steeper non-recurrent
design and veri�cation costs.

3 ARCHITECTURE
3.1 Binary Neural Networks primer
In binary neural networks, neural network inference can be mapped
to a sequence of convolutional and densely connected layers of the
form

y(kout) = binarize±1
©≠
´
bkout +

’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(1)

whereW, x y are the binarized (2 ±1) weight, input and output ten-
sors respectively; b is a real-valued bias; ⌦ is the cross-correlation
operation for convolutional layers and a normal product for densely
connected ones. binarize±1(·) combines batch normalization for in-
ference with a transformation from the integer-valued output of
the sum operation in Equation 2 into a binary value:

binarize±1(t) = sign
⇣
�
t � µ

�
+ �

⌘
(2)

for k_out in range(0, N_out):
for k_in in range(0, N_in):
for i in range(0, h_out):

for j in range(0, w_out):
y[k_out,i,j] = 0
for u_i in range(0, fs):
for u_j in range(0, fs):

y[k_out,i,j] += W[k_out,k_in,u_i,u_j]
* x[k_in,i+u_i,j+u_j]

Listing 1: Baseline loops of a BNN convolutional layer1.

where � , � , µ, � are the learned parameters of batch normalization.
A more convenient representation of the BNN layer can be ob-

tained by mapping elements of value +1 to 1-valued bits and those
of value �1 to 0-valued bits, and moving the bias into the binariza-
tion function. Equation 2 can be reorganized into

binarize0,1(t) =
(
1 if t � ��/� ⌘ � , else 0 (when � > 0)
1 if t  ��/� ⌘ � , else 0 (when � < 0)

(3)

where � ⌘ �/� , � ⌘ � +�/� (b � µ), and � ⌘ ��/� is a threshold de-
�ned for convenience in Section 3.3.3. Multiplications in Equation 1
can be replaced with XNOR operations, and sums with popcounting
(i.e., counting the number of asserted bits):

y(kout) = binarize0,1
©≠
´
’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(4)

3.2 XNE operating principles
The XNOR Neural Engine we propose in this work has been

designed to be able to execute both binarized convolutional and
binarized dense layers. Convolutional layers consist of six nested
loops on output featuremaps, input featuremaps, two output spatial
dimensions, and two �lter spatial dimensions; Listing 1 shows a
naïve implementation of a convolutional layer in Python pseudo-
code. Densely connected layers can be considered as a limit case
of the convolutional layer for a 1 ⇥ 1 �lter on a single pixel in the
spatial dimensions, i.e. h_out=w_out=fs=1.

In modern topologies [2][4], deeper convolutional layers have
N_out,N_in>h_out,w_out; in other words, layers become “less convolu-
tional” and more similar to densely connected layers. This leads
towards choosing an architecture where pixel- or feature map-level
parallelism is favoured over �lter-level parallelism (contrary to
designs based on sliding windows). This is particularly true for
BNNs, where energy e�ciency can be attained only by operating
on tens/hundreds of binary pixels in parallel – which cannot be
done with �lter-level parallelism on deeper layers.

A second fundamental consideration is that, since intermediate
values of the popcount operation are integer, it is highly preferable
to perform the operation of Equation 4 without storing them in
memory. In other words, the accelerator has to be weight- and
output-stationary [22] or input- and output- stationary. In the re-
mainder on this paper, we focus on the latter case, although the
XNE can arguably be used in both modes by swapping the roles of
weights and inputs.

1The * and += operators indicate XNOR and popcount-accumulation respectively.

Conference’17, July 2017, Washington, DC, USA

The other popular approach is to drop the arithmetic precision of
weights or activations, to minimize the energy spent in their com-
putation. Up to now, this approach has proven to be very popular
on the algorithmic side: DoReFaNet [8], BinaryConnect [17], Bina-
ryNet [11] and XNOR-Net [12] have been proposed as techniques
to progressively reduce the precision of weights and activations by
quantizing it to less than 8 bits or outright binarizing it, at the cost
of retraining and loss of accuracy. More recently, methods such as
ABC-Net [18] and Incremental Network Quantization [19] have
demonstrated that low-precision neural networks can be trained
to an accuracy decreased < 5% with respect to the full precision
one. Naturally, this approach lends itself well to being implemented
in hardware. The Fulmine SoC [20] includes a vectorial hardware
accelerator capable of scaling the precision of weights from 16
bits down to 8 or 4 bits, gaining increased execution speed with
similar power consumption. Envision [15] goes much further: it em-
ploys dynamic voltage, frequency and accuracy scaling to tune the
arithmetic precision of its computation, reaching up to 10 Top/s/W.
YodaNN [21] drops the precision of weights to a single bit by target-
ing binary-weight networks (activations use “full” 12-bit precision),
and can reach up to 61 Top/s/W using standard cell memories to
tune down the operating voltage.

To reach the highest possible e�ciency, binary and ternary neu-
ral networks are perhaps most promising as they minimize the
energy spent for each elementary operation, and also the amount
of data transferred to/from memory, which is one of the biggest
contributors to the “real” energy consumption. One of the �rst ar-
chitectures to exploit these peculiarities has been FINN [22], which
is able to reach more than 200 Gop/s/W on a Xilinx FPGA, vastly
outperforming the state-of-the-art for FPGA-based deep inference
accelerators. Recent e�orts for the deployment of binary neural
networks on silicon, such as BRein [23], XNOR-POP [24], Conv-
RAM [25] and Khwa et al. [26] have mainly targeted in-memory
computing, with energy e�ciencies in the range 20-55 Top/s/W.
However, the advantage of this methodology is not yet clear, as
more “traditional” ASICs such as UNPU [27] can reach a similar
level of e�ciency of 50.6 Top/s/W. Mixed-signal approaches [28]
can reach 10⇥ higher e�ciency, with much steeper non-recurrent
design and veri�cation costs.

3 ARCHITECTURE
3.1 Binary Neural Networks primer
In binary neural networks, neural network inference can be mapped
to a sequence of convolutional and densely connected layers of the
form

y(kout) = binarize±1
©≠
´
bkout +

’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(1)

whereW, x y are the binarized (2 ±1) weight, input and output ten-
sors respectively; b is a real-valued bias; ⌦ is the cross-correlation
operation for convolutional layers and a normal product for densely
connected ones. binarize±1(·) combines batch normalization for in-
ference with a transformation from the integer-valued output of
the sum operation in Equation 2 into a binary value:

binarize±1(t) = sign
⇣
�
t � µ

�
+ �

⌘
(2)

for k_out in range(0, N_out):
for k_in in range(0, N_in):
for i in range(0, h_out):

for j in range(0, w_out):
y[k_out,i,j] = 0
for u_i in range(0, fs):
for u_j in range(0, fs):

y[k_out,i,j] += W[k_out,k_in,u_i,u_j]
* x[k_in,i+u_i,j+u_j]

Listing 1: Baseline loops of a BNN convolutional layer1.

where � , � , µ, � are the learned parameters of batch normalization.
A more convenient representation of the BNN layer can be ob-

tained by mapping elements of value +1 to 1-valued bits and those
of value �1 to 0-valued bits, and moving the bias into the binariza-
tion function. Equation 2 can be reorganized into

binarize0,1(t) =
(
1 if t � ��/� ⌘ � , else 0 (when � > 0)
1 if t  ��/� ⌘ � , else 0 (when � < 0)

(3)

where � ⌘ �/� , � ⌘ � +�/� (b � µ), and � ⌘ ��/� is a threshold de-
�ned for convenience in Section 3.3.3. Multiplications in Equation 1
can be replaced with XNOR operations, and sums with popcounting
(i.e., counting the number of asserted bits):

y(kout) = binarize0,1
©≠
´
’
kin

⇣
W(kout ,kin) ⌦ x(kin)

⌘™Æ
¨

(4)

3.2 XNE operating principles
The XNOR Neural Engine we propose in this work has been

designed to be able to execute both binarized convolutional and
binarized dense layers. Convolutional layers consist of six nested
loops on output featuremaps, input featuremaps, two output spatial
dimensions, and two �lter spatial dimensions; Listing 1 shows a
naïve implementation of a convolutional layer in Python pseudo-
code. Densely connected layers can be considered as a limit case
of the convolutional layer for a 1 ⇥ 1 �lter on a single pixel in the
spatial dimensions, i.e. h_out=w_out=fs=1.

In modern topologies [2][4], deeper convolutional layers have
N_out,N_in>h_out,w_out; in other words, layers become “less convolu-
tional” and more similar to densely connected layers. This leads
towards choosing an architecture where pixel- or feature map-level
parallelism is favoured over �lter-level parallelism (contrary to
designs based on sliding windows). This is particularly true for
BNNs, where energy e�ciency can be attained only by operating
on tens/hundreds of binary pixels in parallel – which cannot be
done with �lter-level parallelism on deeper layers.

A second fundamental consideration is that, since intermediate
values of the popcount operation are integer, it is highly preferable
to perform the operation of Equation 4 without storing them in
memory. In other words, the accelerator has to be weight- and
output-stationary [22] or input- and output- stationary. In the re-
mainder on this paper, we focus on the latter case, although the
XNE can arguably be used in both modes by swapping the roles of
weights and inputs.

1The * and += operators indicate XNOR and popcount-accumulation respectively.

A B out

-1 -1 +1

-1 +1 -1

+1 -1 -1

+1 +1 +1

Binary product à XOR
A B out

0 0 1

0 1 0

1 0 0

1 1 1

XNOR

Multi-bit accumulationThresholding

|

XNE: XNOR Neural Engine

21

BINCONV: Binary dot-product and thresholding logic array

XNE area is ~14000
um2 (71 KGE, 72%

Riscy+FPU)

XNE
SOC ICO

RISCY + FPU

PRIVATE MEMORY

SHARED MEMORY

Quentin in GlobalFoundries 22FDX

Shared memory is
56 KB SRAM + 8 KB

SCM

Private memory is
448 KB SRAM

+ 3r2w 8 KB SCM

|

XNE Energy Efficiency

22

With SRAMs, max eff
@ 0.65V 8.7 Top/s/W

With SCMs, max eff
@ 0.5V 46.3 Top/s/W

But… Accuracy Loss is high even with retraining (10%+)
Need flexible precision tuning!

The importance of on-chip memory options
L1 SCM, L2 high-density, low leakgage SRAM (activations), MRAM (weights)

22 FDX measured silicon

Note: All Memory

on chip

(max:MBs)

|

Flexibility needed: Binary-Based Quantization (BBQ)

23

QNN layer :

power-of-2 scaling factors

1-bit input fmaps
1-bit weights

Q-bit output fmaps

INT32 accumulator

N-bit input fmaps
M-bit weights

Q-bit output fmaps

|

Vector LD
/S

T U
nit (9x32 bit)

Fmap Buffer

Block Block Block

Block Block Block

Block Block Block

Block Block Block

...

...

...

...

...

Acc Acc Acc...

Scale & Add

BinConv

BinConv BinConv

BinConv

9x9 array

RBE Block

Quant Quant Quant...

to/from
 L1 TC

D
M

e.g. a 3x3 conv
with N=4 bits

Ctrl &
Regfile

to/from
peripheral i.c.

Reconfigurable Binary Engine

24

Energy efficiency 10-20x (0.1pJ/OP) wrt to SW on cluster @same accuracy

Open sourced this week!

|

25

1mW average power with 10mW active power (10GOPS @ 1pJ/OP) à sub mW sleep

Digital Processor
Core 0
Core 1
Core 2
Core 3
Core 4
Core 5
Core 6
Core 7

Shared L1 M
em

ory

Cluster
Region

L2 Memory

Camera IF
SPI
I2S
I2C

Fabric
Controller

Core

L1

M
ic

ro
 D

M
A

DC/DC

Smart Periph

Power
Manager

Sensors Radio Subsystem

Streamà 100mW
Detect&Compressà1-10mW

Watchful sleep à <1mW

Log(P)

t

Towards In-Sensor: Achieving sub-mW average power?

Duty cycling not acceptable when input events are asynchronous à watchful Sleep

|

Need µW-range always-on Intelligence

CLUSTERPULPissimo

in
te

rc
on

ne
ctL2

Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

HWCE

SWM

26

Smart Wakeup Module

|

HD-Based smart Wake-Up Module

CLUSTERPULPissimo
in

te
rc

on
ne

ctL2
Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

Always-on Domain

I/O
(SPI) PreprocessorExt.

ADC

27

|

CLUSTERPULPissimo
in

te
rc

on
ne

ctL2
Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

Always-on Domain

I/O
(SPI) PreprocessorExt.

ADC

28

HD-Based smart Wake-Up Module

|

CLUSTERPULPissimo
in

te
rc

on
ne

ctL2
Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

Always-on Domain

Ext.
ADC

29

Autonomous
HD-Computing

Unit

I/O
(SPI) Preprocessor

HD-Based smart Wake-Up Module

|

CLUSTERPULPissimo
in

te
rc

on
ne

ctL2
Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

Always-on Domain

Ext.
ADC

Wake Up

30

Autonomous
HD-Computing

Unit

I/O
(SPI) Preprocessor

HD-Based smart Wake-Up Module

|

Not Only CNNs: Hyper-Dimensional Computing
1st 2nd 3rd 4th 1000th
[0 1 0 1 1]

Low Dimensional
Input Data
(e.g. 7-bit LBP)

Mapping

[0 1 0 1 1]
[1 1 1 0 1]
[1 1 0 0 0]
[0 1 1 1 1]

HD-
Encoding

• Component-
wise Majority

• XOR
• Permutation

[1 1 0 1 1]

Search Vector Associative Memory
[0 1 0 1 1]
[1 1 1 0 1]
[1 1 0 0 0]
[0 1 1 1 1]
[1 1 1 1 1]
[0 1 0 1 1]
[0 1 0 1 1]P

ro
to

ty
pe

 V
ec

to
rs

Similarity Search
(e.g. Hamming Distance)

Highly parallel, fault-tolerand binary
operators, assoc-min-distance search

Merge storage & computation
i.e. In-memory computing

31

|

05.02.21

32

In-memory Hyperdimensional Computing

Associative Memory
(latch based SCM)
[0100010…………………………………..1]
[1000101…………………………………..1]
[0100101………………………................0]

⋮
[0100101…………………………………..0]

Associative Memory

D Q D Q ⋯ D Q

D Q D Q ⋯ D Q

D Q D Q ⋯ D Q

D Q D Q ⋯ D Q

⋮
X

Adder
Tree

A > B

Read

Write

NCLASS cycles

|

Design (post P&R)
Technology GF22 UHT
Area 670kGE
Max. Frequency 3 MHz
SCM-Memory 32 kBit
VDD 0.6V

fclk 32kHz 200kHz

max. sampling rate 150 SPS/Channel 1kSPS/Channel

PSWU, dynamic 0.99uW 6.21uW

PSWU, leakage 0.7uW 0.7uW

PSPI, dynamic 1.28uW 8.00uW

PSWU, total Measured 2.97uW 14.9uW

HD-Based smart Wake-Up Module

Implemented with

lowest leakage cell

library (UHVT)

To be open

sourced in a few

days!!

33

|

05.02.21

34

When you count mWatts, everything matters!

§ SPIs
§ I/O VDD=1.8V

§ fspi-max=50MHz,

§ Assuming duty-cycled operation @
various bandwidths

§ ULP serial link (duty-cycled)

§ 10.2x less energy and 15.7x higher
maximum BW compared to single SPI

§ 2.56x higher efficiency than the DDR
Octal SPI @787Mbps

§ 5 à 3pJ/bit
§ However it’s still 2mW@ 500Mbps

§ 3D integration: 0.15pJ/bit and below
0

20

40

60

80

100

120

140

0.1 1 10 100 1000
En

er
gy

 p
er

 b
it[

pJ
/b

it]
Bandwidth [Mb/s]

Quad SPI SDR Quad SPI DDR Octal SPI SDR

Octal SPI DDR Taped-out link Single SPI

What about IO power? (Mem, Sensor)

From near-sensor to in-sensor (3D IC)

|

Closing thoughts – Open Platform for near-sensor AI
Open Parallel Ultra-Low Power Platforms for Extreme Edge AI

Open Platform
§ For science … fundamental “research infrastructure”

Reduce “getting up to speed” overhead for partners
Enables fair and well controlled benchmarking

§ For Business … it is truly disruptive

Reduces the NRE , faster innovation path for startups
New business models (for profit and non-for profit)
Helps exchange of information across NDA walls
Great for Marketing & Training
More Secure, safe, auditable HW
Exemplary collaboration with GF (Quentin, Arnold, Vega…)

Heterogeneous & Flexible
§ 1-2 orders of magnitude improvement by acceleration

Various flavors: number-crunching, always-on, reconfigurable

§ 2 orders of magnitude improvement on IO energy (memory, sensor)

needed to achieve pJ/OP @ full platform

3D-IC technology is a key enabler

Posh Open Source Hardware
(POSH):

An open source System on Chip

(SoC) design and verification

eco-system that enables cost

effective design of ultra-complex

SoCs

35

http://pulp-platform.org @pulp_platform

Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone
Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe
Tagliavini, Antonio Pullini, Germain Haugou, Lukas Cavigelli, Manuele
Rusci, Florian Glaser, Renzo Andri, Fabio Montagna, Bjoern Forsberg,
Pasquale Davide Schiavone, Alfio Di Mauro, Victor Javier Kartsch Morinigo,
Tommaso Polonelli, Fabian Schuiki, Stefan Mach, Andreas Kurth, Florian
Zaruba, Manuel Eggimann, Philipp Mayer, Marco Guermandi, Xiaying
Wang, Michael Hersche, Robert Balas, Antonio Mastrandrea, Matheus
Cavalcante, Angelo Garofalo, Alessio Burrello, Gianna Paulin, Georg
Rutishauser, Andrea Cossettini, Luca Bertaccini, Maxim Mattheeuws,
Samuel Riedel, Sergei Vostrikov, Vlad Niculescu, Frank K. Gurkaynak,
and many more that we forgot to mention

