Bio-inspired Autonomous Exploration Policies with CNN-based Object Detection on Nano-drones

Lorenzo Lamberti¹, Luca Bompani¹, Victor Javier Kartsch¹, Manuele Rusci², Daniele Palossi³⁴, Luca Benini¹⁴

¹DEI - University of Bologna, Italy
³IDSIA - USI and SUPSI, Switzerland
²KU Leuven, Belgium
⁴IIS - ETH Zurich, Switzerland
Huge interest in **autonomous** (i.e., no external infrastructure) unmanned aerial vehicles (UAVs). Relevant applications in civil and industrial use cases:

- Rescue missions
- Surveillance, inspection
- Precision agriculture
- Entertainment
Why autonomous nano-UAVs?

Huge interest in **autonomous** (i.e., no external infrastructure) unmanned aerial vehicles (UAVs). Relevant applications in civil and industrial use cases:

- **Rescue missions**
- **Surveillance, inspection**
- **Precision agriculture**
- **Entertainment**

Why autonomous **nano-sized** UAVs?

- Enhanced safety → e.g., Human Robot Interaction (HRI)
- New use cases: indoor locations, ubiquitous IoT, etc.
- Reduced costs
Nano-drones challenges:
• Small form factor (~10cm)
• Limited payload (~15g)
• Limited computing power budget (<100mW)

Our goal for autonomous nano-drones:

<table>
<thead>
<tr>
<th>UAV</th>
<th>Standard-sized</th>
<th>Nano-sized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size [⌀, weight]</td>
<td>~50cm / ~ few Kg</td>
<td>~10cm / ~50g</td>
</tr>
<tr>
<td>Tot. Power</td>
<td>~ 100 W</td>
<td>~ 5W</td>
</tr>
<tr>
<td>Processing device</td>
<td>High-end CPU</td>
<td>Low-power MCU</td>
</tr>
</tbody>
</table>
Nano-drones challenges:
• Small form factor (~10cm)
• Limited payload (~15g)
• Limited computing power budget (<100mW)

Our goal for autonomous nano-drones:
• Multi-tasking perception (as standard-sized UAVs, and biological systems [1])
• Real-time requirements

<table>
<thead>
<tr>
<th>UAV</th>
<th>Standard-sized</th>
<th>Nano-sized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size [⌀, weight]</td>
<td>~50cm / ~ few Kg</td>
<td>~10cm / ~50g</td>
</tr>
<tr>
<td>Tot. Power</td>
<td>~ 100 W</td>
<td>~ 5W</td>
</tr>
<tr>
<td>Processing device</td>
<td>High-end CPU</td>
<td>Low-power MCU</td>
</tr>
</tbody>
</table>

State-of-the-Art: autonomous nano-drones

Perception on autonomous nano-drones: single tasks

Visual navigation Pose estimation Optical flow Exploration Object detection

All these works deployed individual tasks on the nano-drone → Not targeting multi-tasking perception

Enabling multiple perception tasks aboard an autonomous nano-drone

1. Exploration of an unknown environment;
2. Object detection.
Robotic Platform: host + multi-core

Hardware

Crazyflie 2.1 + Multi-ranger deck + AI-Deck =
Robotic Platform: host + multi-core

Hardware

Crazyflie 2.1 + Multi-ranger deck + Al-Deck

STM32F4 MCU (<100 MMAC/s)

Control-based tasks
Sensor interfacing

VL53L1x

5x ToF sensors

Time-of-flight ranging sensors

distance

Host
Robotic Platform: host + multi-core

Hardware

- **Crazyflie 2.1**
- **Multi-ranger deck**
- **AI-Deck**

Host

- **STM32F4 MCU** (<100 MMAC/s)
 - Control-based tasks
 - Sensor interfacing

5x ToF sensors

- **VL53L1x**
 - Time-of-flight ranging sensors

Multi-core MCU

- **GAP8 SoC** (~1 GMAC/s)
 - 8 parallel ULP cores
 - QVGA camera

18 April 2023
Lorenzo Lamberti / University of Bologna
Tasks and mapping

Hardware
- **Crazyflie 2.1**
- **Multi-ranger deck**
- **AI-Deck**

1 Exploration
- **Goal**: exploring unknown environment
- **Algorithm**: bio-inspired exploration policy

2 Object Detection
- CNN detector for 2 object classes

CNN outputs
- Bounding box
- Object class
- Confidence

18 April 2023
Lorenzo Lamberti / University of Bologna
Exploration

Obstacle avoidance: ranging-based sensor

Hardware

Crazyflie 2.1 + Multi-ranger deck = ToF-based collision avoidance

d
Obstacle avoidance: ranging-based sensor

We compare 4 exploration policies

<table>
<thead>
<tr>
<th>Pseudo-random</th>
<th>Wall-following</th>
<th>Spiral</th>
<th>Rotate-and-measure</th>
</tr>
</thead>
</table>

lightweight state machines
Object detection

Convolutional neural network [6]:

Object detection

Convolutional neural network [6]:

![Convolutional neural network diagram](image)

Mobilenet v2 + SSD-lite

CNN stats:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CNN [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>4.8M</td>
</tr>
<tr>
<td>Operations/inference</td>
<td>483M MAC</td>
</tr>
</tbody>
</table>

Deployment: 8-bit weights and activations
Quantization aware fine-tuning

Hardware

![AI-Deck](image)

Object detection

Convolutional neural network [6]:

Mobilenet v2 + SSD-lite

CNN stats:

- Parameters: 4.8M
- Operations/inference: 483M MAC

Deployment: 8-bit weights and activations
Quantization aware fine-tuning

Object detection

Convolutional neural network [6]:

![Diagram showing input, convolutional neural network, and output](image)

Mobilenet v2 + SSD-lite

CNN stats:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Operations/inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN [6]</td>
<td>4.8M</td>
</tr>
<tr>
<td></td>
<td>483M MAC</td>
</tr>
</tbody>
</table>

Input:

- Parameters
- Operations/inference

Output:

- Feasible, but introduces memory overhead

Deployment: 8-bit weights and activations

Quantization aware fine-tuning

Hardware

- **Al-Deck**
 - GAP8
 - **RAM 8 MB**
 - L2 512 KB
 - L1 64 KB

18 April 2023

Lorenzo Lamberti / University of Bologna
Optimization:
The depth multiplier (α) is an hyperparameter that modifies the number of filters and output channels of each layer.

Filters:
- Baseline $\alpha=1$
- $\alpha<1$
- $\# \text{filters} = \text{filters} \times \alpha$

Activations:
- Baseline $\alpha=1$
- $\alpha<1$
- Tensor = baseline $\times \alpha$

Depth multiplier used: $1 \times 0.75 \times 0.5 \times$
CNN optimization and training

Optimization:
The depth multiplier (α) is an hyperparameter that modifies the number of filters and output channels of each layer.

Filters
Baseline $\alpha=1$

$\alpha<1$

#filters = filters*\alpha

Activations
Baseline $\alpha=1$

$\alpha<1$

Tensor = baseline*\alpha

Training pipeline:

Training/Testing: OpenImages Dataset ➔ Augmentation ➔ Dataset Balancing ➔ Himax fine-tuning

2-class training:
- bottles
- tin cans

Augmentation: flip, resize, brightness, grayscale

Balancing the number of images for dataset classes

Depth multiplier used:
1× 0.75× 0.5×
Evaluation metrics

Exploration policies

Metric: coverage area

- Environment discretization
- Exploring area
- Unexplored area

Object detection

Metric: mean average precision (mAP)

In-field assessment

Lorenzo Lamberti / University of Bologna
Evaluation metrics

Exploration policies
- **Metric:** coverage area

Environment discretization
- **Coverage area [%]**
- **Time**

Object detection
- **Metric:** mean average precision (mAP)

\[
\text{mAP} = \frac{TP}{TP + FP}
\]

\[
\text{IoU} = \frac{\text{area of Overlap}}{\text{area of Union}}
\]

In-field assessment
Evaluation metrics

Exploration policies

Metric: coverage area

<table>
<thead>
<tr>
<th>explored</th>
<th>unexplored</th>
</tr>
</thead>
</table>

- Environment discretization

![Coverage area vs Time graph]

Object detection

Metric: mean average precision (mAP)

\[
\text{mAP} = \frac{\text{TP}}{\text{TP} + \text{FP}}
\]

\[
\text{IoU} = \frac{\text{area of Overlap}}{\text{area of Union}}
\]

In-field assessment

\[
\text{Detection Rate} = \frac{\#\text{Detected Objects}}{\#\text{Objects}}
\]
Evaluation: exploration policies

Test setup: 5min flight, 3 speeds, 4 policies. Results shown for avg. speed = 0.5 m/s
Evaluation: exploration policies

Test setup: 5min flight, 3 speeds, 4 policies. Results shown for avg. speed = 0.5 m/s

<table>
<thead>
<tr>
<th>Pseudo-random</th>
<th>Wall-following</th>
<th>Spiral</th>
<th>Rotate-and-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Coverage area:**
 - **(A) Pseudo-random:** 74%
 - **(B) Wall-following:** 48%
 - **(C) Spiral:** 82%
 - **(D) Rotate-and-measure:** 43% (Avg.)
Evaluation: exploration policies

Test setup: 5min flight, 3 speeds, 4 policies. Results shown for avg. speed = 0.5 m/s

<table>
<thead>
<tr>
<th>Policy</th>
<th>Coverage area (%)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-random</td>
<td>74%</td>
<td>(A)</td>
</tr>
<tr>
<td>Wall-following</td>
<td>48%</td>
<td>(B)</td>
</tr>
<tr>
<td>Spiral</td>
<td>82%</td>
<td>(C)</td>
</tr>
<tr>
<td>Rotate-and-measure</td>
<td>43% (Avg.)</td>
<td>(D)</td>
</tr>
</tbody>
</table>

Results:
- Coverage area: 74% for Pseudo-random (A)
- Coverage area: 48% for Wall-following (B)
- Coverage area: 82% for Spiral (C)
- Coverage area: 43% (Avg.) for Rotate-and-measure (D)
SSD evaluation

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

<table>
<thead>
<tr>
<th>SSD</th>
<th>Size [MB]</th>
<th>MAC</th>
<th>mAP</th>
<th>Throughput [FPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4.7</td>
<td>534M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75x</td>
<td>2.7</td>
<td>358M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5x</td>
<td>1.2</td>
<td>193M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Himax dataset
SSD evaluation

Setup: Tested on Himax dataset
Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

<table>
<thead>
<tr>
<th>SSD</th>
<th>Size [MB]</th>
<th>MAC</th>
<th>mAP</th>
<th>Throughput [FPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4.7</td>
<td>534M</td>
<td>50%</td>
<td>1.6</td>
</tr>
<tr>
<td>0.75x</td>
<td>2.7</td>
<td>358M</td>
<td>48%</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5x</td>
<td>1.2</td>
<td>193M</td>
<td>32%</td>
<td>4.3</td>
</tr>
</tbody>
</table>

→ most accurate & slowest

→ least accurate & fastest
SSD evaluation

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

<table>
<thead>
<tr>
<th>SSD</th>
<th>Size [MB]</th>
<th>MAC</th>
<th>mAP</th>
<th>Throughput [FPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4.7</td>
<td>534M</td>
<td>50%</td>
<td>1.6</td>
</tr>
<tr>
<td>0.75x</td>
<td>2.7</td>
<td>358M</td>
<td>48%</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5x</td>
<td>1.2</td>
<td>193M</td>
<td>32%</td>
<td>4.3</td>
</tr>
</tbody>
</table>

→ **most accurate & slowest**

→ **least accurate & fastest**

SSD with best mAP: 1x and 0.75x

Himax dataset
SSD evaluation

Setup: Tested on Himax dataset
Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

<table>
<thead>
<tr>
<th>SSD</th>
<th>Size [MB]</th>
<th>MAC</th>
<th>mAP</th>
<th>Throughput [FPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4.7</td>
<td>534M</td>
<td>50%</td>
<td>1.6</td>
</tr>
<tr>
<td>0.75x</td>
<td>2.7</td>
<td>358M</td>
<td>48%</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5x</td>
<td>1.2</td>
<td>193M</td>
<td>32%</td>
<td>4.3</td>
</tr>
</tbody>
</table>

→ most accurate & slowest
→ least accurate & fastest

SSD with best mAP: 1x and 0.75x

Power consumption

<table>
<thead>
<tr>
<th>SSD</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>134 mW</td>
</tr>
<tr>
<td>0.75x</td>
<td>143 mW</td>
</tr>
</tbody>
</table>

Himax dataset
Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

<table>
<thead>
<tr>
<th>SSD</th>
<th>Size [MB]</th>
<th>MAC</th>
<th>mAP</th>
<th>Throughput [FPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4.7</td>
<td>534M</td>
<td>50%</td>
<td>1.6</td>
</tr>
<tr>
<td>0.75x</td>
<td>2.7</td>
<td>358M</td>
<td>48%</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5x</td>
<td>1.2</td>
<td>193M</td>
<td>32%</td>
<td>4.3</td>
</tr>
</tbody>
</table>

→ most accurate & slowest

→ least accurate & fastest

SSD with best mAP: 1x and 0.75x

Power consumption

<table>
<thead>
<tr>
<th>SSD</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>134 mW</td>
</tr>
<tr>
<td>0.75x</td>
<td>143 mW</td>
</tr>
</tbody>
</table>

Drone’s power breakdown

<table>
<thead>
<tr>
<th></th>
<th>Motors</th>
<th>CF elect.</th>
<th>AI-deck</th>
<th>Ranger deck</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power [W]</td>
<td>7.32</td>
<td>0.277</td>
<td>0.134</td>
<td>0.286</td>
<td>8.02</td>
</tr>
<tr>
<td>Percentage</td>
<td>91.3%</td>
<td>3.5%</td>
<td>1.7%</td>
<td>3.6%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Himax dataset
SSD evaluation

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

<table>
<thead>
<tr>
<th>SSD</th>
<th>Size [MB]</th>
<th>MAC</th>
<th>mAP</th>
<th>Throughput [FPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4.7</td>
<td>534M</td>
<td>50%</td>
<td>1.6</td>
</tr>
<tr>
<td>0.75x</td>
<td>2.7</td>
<td>358M</td>
<td>48%</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5x</td>
<td>1.2</td>
<td>193M</td>
<td>32%</td>
<td>4.3</td>
</tr>
</tbody>
</table>

→ **most accurate & slowest**

SSD with best mAP: 1x and 0.75x

→ **least accurate & fastest**

Power consumption

<table>
<thead>
<tr>
<th>SSD</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>134 mW</td>
</tr>
<tr>
<td>0.75x</td>
<td>143 mW</td>
</tr>
</tbody>
</table>

Drone's power breakdown

<table>
<thead>
<tr>
<th></th>
<th>Motors</th>
<th>CF elect.</th>
<th>Al-deck</th>
<th>Ranger deck</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power [W]</td>
<td>7.32</td>
<td>0.277</td>
<td>0.134</td>
<td>0.286</td>
<td>8.02</td>
</tr>
<tr>
<td>Percentage</td>
<td>91.3%</td>
<td>3. 5%</td>
<td>1.7%</td>
<td>3.6%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Himax dataset
In-field evaluation: setup

Experiment configurations:

- 2 exploration policies
- SSD models: 1x, 0.75x
- 3 mean velocities: [0.1, 0.5, 1.0] m/s
- 5 runs for each configuration

5 minutes flight

6 objects (bottles, tin cans)
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 m/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
</tbody>
</table>

0.5 m/s

1 m/s

Best configuration:

- CNN: SSD 1x ——> see paper!
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
</tr>
</tbody>
</table>

Best configuration:
- CNN: SSD 1x
- Exploration:
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td>74%</td>
<td>82%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>83%</td>
</tr>
</tbody>
</table>

Best configuration:
- CNN: SSD 1x \[\Rightarrow\] see paper!
- Exploration: Pseudo-random
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
</tr>
</tbody>
</table>

	Pseudo-random	Spiral
0.5 m/s	74%	82%
1 m/s	80%	83%

Best configuration:
- **CNN:** SSD 1x ---► see paper!
- **Exploration:** Pseudo-random
- **Speed:**
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Pseudo-random</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>Spiral 73%</td>
<td>Pseudo-random 74%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>Spiral 70%</td>
<td>Pseudo-random 80%</td>
</tr>
</tbody>
</table>

Best configuration:
- **CNN:** SSD 1x
- **Exploration:** Pseudo-random
- **Speed:** 0.5 m/s

see paper!
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
</tr>
</tbody>
</table>

Best configuration:
- CNN: SSD 1x
- Exploration: Pseudo-random
- Speed: 0.5 m/s

Best detection rate: 90% (avg)

Lorenzo Lamberti / University of Bologna
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Pseudo-random</th>
<th>Spiral</th>
<th>Pseudo-random</th>
<th>Spiral</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
<td>74%</td>
<td>82%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
<td>80%</td>
<td>83%</td>
</tr>
</tbody>
</table>
Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
</tr>
</tbody>
</table>

The best detection rate ≠ highest coverage area!
Closed-loop system evaluation

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

<table>
<thead>
<tr>
<th>Avg speed</th>
<th>Detection rate</th>
<th>Coverage area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td>0.5 m/s</td>
<td>90%</td>
<td>73%</td>
</tr>
<tr>
<td>1 m/s</td>
<td>83%</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>Pseudo-random</td>
<td>Spiral</td>
</tr>
<tr>
<td></td>
<td>74%</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>83%</td>
</tr>
</tbody>
</table>

The best detection rate ≠ highest coverage area!

Take away message

Higher flight speed → improves the coverage area.

But challenges the object detector’s capability due to its limited throughput (1.6 fps).
Enabled multi-tasking perception on an autonomous nano drone

<table>
<thead>
<tr>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
</tr>
<tr>
<td>Object detection</td>
</tr>
</tbody>
</table>

Best configuration

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>SSD 1x</td>
</tr>
<tr>
<td>Policy</td>
<td>pseudo-random</td>
</tr>
<tr>
<td>Speed</td>
<td>0.5 m/s</td>
</tr>
</tbody>
</table>

Best detection rate: 90%
Thank you for your attention!

Lorenzo Lamberti

Ph.D. student at University of Bologna, Italy

lorenzo.lamberti@unibo.it