DESIGN, AUTOMATION & TEST IN EUROPE

17 – 19 April 2023 · Antwerp, Belgium

The European Event for Electronic System Design & Test This project was partially funded by the Autonomous Robotics Research Center of the Technology Innovation Institute

Bio-inspired Autonomous Exploration Policies with CNN-based Object Detection on Nano-drones

*Lorenzo Lamberti*¹, Luca Bompani¹, Victor Javier Kartsch¹, Manuele Rusci², Daniele Palossi³⁴, Luca Benini¹⁴

¹DEI - University of Bologna, Italy ³IDSIA - USI and SUPSI, Switzerland

²KU Leuven, Belgium ⁴ IIS - ETH Zurich, Switzerland

Why autonomous nano-UAVs?

Huge interest in <u>autonomous</u> (i.e., no external infrastructure) unmanned aerial vehicles (UAVs). Relevant applications in civil and industrial use cases:

Rescue missions

Surveillance, inspection

Precision agriculture*

Entertainment

2

Why autonomous nano-UAVs?

Huge interest in <u>autonomous</u> (i.e., no external infrastructure) unmanned aerial vehicles (UAVs). Relevant applications in civil and industrial use cases:

Rescue missions

Surveillance, inspection

Precision agriculture*

Entertainment

Why autonomous nano-sized UAVs?

- Enhanced safety \rightarrow e.g., Human Robot Interaction (HRI)
- New use cases: indoor locations, ubiquitous IoT, etc.
- Reduced costs

Standard-sized UAV

> Nano-sized UAV

Autonomous nano-UAVs: challenges & goals

Nano-drones challenges:

- Small form factor (~10cm)
- Limited payload (~15g)
- Limited computing power budget (<100mW)

Our goal for autonomous nano-drones:

UAV	Standard-sized	Nano-sized
Size [ø, weight]	~50cm / ~ few Kg	~10cm / ~50g
Tot. Power	~ 100 W	~ 5W
Processing device	High-end CPU	Low-power MCU

Autonomous nano-UAVs: challenges & goals

Nano-drones challenges:

- Small form factor (~10cm)
- Limited payload (~15g)
- Limited computing power budget (<100mW)

Our goal for autonomous nano-drones:

- Multi-tasking perception (as standard-sized UAVs, and biological systems [1])
- Real-time requirements

[1] M. Giurfa and R. Menzel, "Insect visual perception: complex abilities of simple nervous systems" Current Opinion in Neurobiology, vol. 7, no. 4, pp. 505–513, 1997.

Lorenzo Lamberti / University of Bologna

State-of-the-Art: autonomous nano-drones

Perception on autonomous nano-drones: single tasks

All these works deployed individual tasks on the nano-drone → Not targeting multi-tasking perception

- [2] L. Lamberti et al., "Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones"
- [3] D. Palossi et al., "Fully Onboard AI-Powered Human-Drone Pose Estimation on Ultralow-Power Autonomous Flying Nano-UAVs"
- [4] R. Bouwmeester et al., " NanoFlowNet: Real-time Dense Optical Flow on a Nano Quadcopter"
- [5] K. Mcguire et al., " A comparative study of bug algorithms for robot navigation"

Our contribution

Enabling multiple perception tasks aboard an autonomous nano-drone

- 1. Exploration of an unknown environment;
- 2. Object detection.

Robotic Platform: host + multi-core

Robotic Platform: host + multi-core

Robotic Platform: host + multi-core

Tasks and mapping

Exploration

Obstacle avoidance: ranging-based sensor

Exploration

Obstacle avoidance: ranging-based sensor

We compare 4 exploration policies

lightweight state machines

Convolutional neural network [6]:

Mobilenet v2 + SSD-lite

[6] Huang J et al. "Speed/accuracy trade-offs for modern convolutional object detectors." In Proceedings of the IEEE CVPR, pp. 7310-7311. 2017.

Convolutional neural network [6]:

Mobilenet v2 + SSD-lite

CNN stats:

	CNN [6]		
Parameters	4.8M		
Operations/inference	483M MAC		
Deployment: 8-bit weights and activations			

Quantization aware fine-tuning

Output

[6] Huang J et al. "Speed/accuracy trade-offs for modern convolutional object detectors." In Proceedings of the IEEE CVPR, pp. 7310-7311. 2017.

18 April 2023

Lorenzo Lamberti / University of Bologna

Hardware

GREENWAVES

AI-Deck

Convolutional neural network [6]:

Mobilenet v2 + SSD-lite

CNN stats:

[6] Huang J et al. "Speed/accuracy trade-offs for modern convolutional object detectors." In Proceedings of the IEEE CVPR, pp. 7310-7311. 2017.

18 April 2023

Lorenzo Lamberti / University of Bologna

Output

Convolutional neural network [6]:

[6] Huang J et al. "Speed/accuracy trade-offs for modern convolutional object detectors." In Proceedings of the IEEE CVPR, pp. 7310-7311. 2017.

18 April 2023

Lorenzo Lamberti / University of Bologna

CNN optimization and training

Optimization:

The depth multiplier (α) is an hyperparameter that modifies the number of filters and output channels of each layer.

CNN optimization and training

Optimization:

The depth multiplier (α) is an hyperparameter that modifies the number of filters and output channels of each layer.

Evaluation metrics

Evaluation metrics

Evaluation metrics

Evaluation: exploration policies

Test setup: 5min flight, 3 speeds, 4 policies. Results shown for avg. speed = 0.5 m/s

Evaluation: exploration policies

Test setup: 5min flight, 3 speeds, 4 policies. Results shown for avg. speed = 0.5 m/s

Evaluation: exploration policies

Test setup: 5min flight, 3 speeds, 4 policies. Results shown for avg. speed = 0.5 m/s

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

SSD	Size [MB]	MAC	mAP	Throughput [FPS]
1x	4.7	534M		
0.75x	2.7	358M		
0.5x	1.2	193M		

Himax dataset

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

Himax dataset

	SSD	Size [MB]	MAC	mAP	Throughput [FPS]	
	1x	4.7	534M	50%	1.6	→ most accurate & slowest
	0.75x	2.7	358M	48%	2.3	
_	0.5x	1.2	193M	32%	4.3	\rightarrow least accurate & fastest

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

Himax dataset

SS	D Size	e [MB]	MAC	mAP	Throughput [FPS]		
1×		4.7	534M	50%	1.6	→ most accurate & slowest	SSD with
0.7	5x ź	2.7	358M	48%	2.3		best mAP:
0.5	x	1.2	193M	32%	4.3	→ least accurate & fastest	1x and 0.75x

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

Himax dataset

5	SSD	Size [MB]	MAC	mAP	Throughput [FPS]		
	1x	4.7	534M	50%	1.6	\rightarrow most accurate & slowest	SSD with
0	.75x	2.7	358M	48%	2.3		best mAP:
().5x	1.2	193M	32%	4.3	\rightarrow least accurate & fastest	1x and 0.75x

Power consumption

SSD	Power
1x	134 mW
0.75x	143 mW

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

Himax dataset

	SSD	Size [MB]	MAC	mAP	Throughput [FPS]		
ſ	1x	4.7	534M	50%	1.6	\rightarrow most accurate & slowest	SSD with
	0.75x	2.7	358M	48%	2.3		best mAP:
	0.5x	1.2	193M	32%	4.3	\rightarrow least accurate & fastest	1x and 0.75x

Drone's power breakdown

Power consumption				
SSD	Power			
1x	134 mW			
0.75x	143 mW			

	Motors	CF elect.	Al-deck	Ranger deck	Total
Power [W]	7.32	0.277	0.134	0.286	8.02
Percentage	91.3%	3. 5%	1.7%	3.6%	100%

Setup: Tested on Himax dataset

Tested: 3 CNN depth multipliers (1x, 0.75x, 0.5x).

SSD throughput/accuracy tradeoffs:

Himax dataset

SSD	Size [MB]	MAC	mAP	Throughput [FPS]		
1x	4.7	534M	50%	1.6	\rightarrow most accurate & slowest	SSD with
0.75x	2.7	358M	48%	2.3		best mAP:
0.5x	1.2	193M	32%	4.3	\rightarrow least accurate & fastest	1x and 0.75x

Drone's power breakdown

Power consumption			
SSD	Power		
1x	134 mW		
0.75x	143 mW		

	Motors	CF elect.	Al-deck	Ranger deck	Total
Power [W]	7.32	0.277	0.134	0.286	8.02
Percentage	91.3%	3. 5%	1.7%	3.6%	100%

In-field evaluation: setup

Experiment configurations:

- 2 exploration policies
- SSD models: 1x, 0.75x
- 3 mean velocities: [0.1, 0.5, 1.0] m/s
- 5 runs for each configuration

5 minutes flight

6 objects (bottles, tin cans)

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage area	
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s				
1 m/s				

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage a	rea
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s				
1 m/s				

Best configuration:

• CNN: SSD 1x --- > see paper!

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage area	
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s	90%	73 %	74%	82%
1 m/s	83%	70%	80%	83%

- CNN: SSD 1x --- > see paper!
- Exploration:

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage area	
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s	90%	73 %	74%	82%
1 m/s	83%	70%	80%	83%

- CNN: SSD 1x ---> see paper!
- Exploration: Pseudo-random

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage area	
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s	90%	73 %	74%	82%
1 m/s	83%	70%	80%	83%

- CNN: SSD 1x --- > see paper!
- Exploration: Pseudo-random
- Speed:

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage area	
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s	90%	73 %	74%	82%
1 m/s	83%	70%	80%	83%

- CNN: SSD 1x --- > see paper!
- Exploration: Pseudo-random
- Speed: 0.5 m/s

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection rate		Coverage area	
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s	90%	73 %	74%	82%
1 m/s	83%	70%	80%	83%

Best configuration:

- CNN: SSD 1x --- > see paper!
- Exploration: Pseudo-random
- Speed: 0.5 m/s

Best detection rate: 90% (avg)

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

	Detection ra	ate	Coverage a	rea
Avg speed	Pseudo-random	Spiral	Pseudo-random	Spiral
0.5 m/s	90 %	73 %	74%	82%
1 m/s	83%	70%	80%	83%

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

Goal: best detection rate.

Comparing CNN vs. exploration policies vs. flight speed

Take away message

Higher flight speed \rightarrow improves the coverage area.

But challenges the object detector's capability due to its limited throughput (1.6 fps).

Conclusion

Enabled multi-tasking perception on an autonomous nano drone

Best detection rate: 90%

Bio-inspired Autonomous Exploration Policies with CNN-based Object Detection on Nano-drones

> Limmun Laminerti, Loin Borrgaani, Visior Javan Karlosh, Manade Russi, Daviele Polosisi, Luce Berlini

> > HOP LONG

TL Burch

DESIGN, AUTOMATION & TEST IN EUROPE

17 - 19 April 2023 · Antwerp, Belgium

The European Event for Electronic System Design & Test This project was partially funded by the Autonomous Robotics Research Center of the Technology Innovation Institute

Thank you for your attention !

Lorenzo Lamberti

Ph.D. student at University of Bologna, Italy lorenzo.lamberti@unibo.it

