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Polling-free synchronization?

exciting, right? find out more!

Implement and evaluate on MemPool

sriedel@iis.ee.ethz.ch

Concurrent algorithms require synchronization
• Blocking synchronization: Locks
→ Polling shared resources

• Non-blocking synchronization: CAS, LR/SC
→ Retry failed attempts Eliminate

polling during 
synchronizationPolling limits performance

• Wasted work during 
unsuccessful attempts

• Contention for shared resources 
with cores doing work

pulp-platform.org

Efficient hardware implementation

@pulp_platform

Colibri: Building a distributed queue

◁ open-source on GitHub! sriedel@iis.ee.ethz.ch
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Fails lead 
to retries

Move the linearization point from the SC to the LR
• Decide who ’wins’ the SC already at the LR
• Only one core executes an LR/SC pair at once

Eliminate
retries
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LRSCwait Ideal
• Reservation 

Queue for each 
memory

• Large overhead

LRSCwait Colibri
• Distributed Queue
• Pointer at memory
• Qnode at cores

• Small overhead

Core A issues a SCwait

Core A and B issue a LRwait

• A 256-core system with 1024 memory banks (1MiB)
• Implemented in GlobalFoundries’ 22nm process
• Colibri comes with only a 6% area overhead

Evaluate the 
throughput of 
different atomic read-
modify-write 
operations and lock 
implementations at 
varying levels of 
contention.

LRSCWait Colibri is 
13% faster than LRSCColibri is up to 6.5× 

faster than LRSC

Compare concurrent queue implementations.

Colibri improves energy efficiency by 
up to 7.1× compared to LRSC 

by eliminating polling and interference.

Consistent high 
throughput (9×)

1.5× better 
performance


