
LRSCwait: Enabling Scalable and Efficient Synchronization in 
Manycore Systems through Polling-Free and Retry-Free Operation

Samuel Riedel, Marc Gantenbein, Alessandro Ottaviano, Torsten Hoefler, and Luca Benini 
Integrated Systems Laboratory (IIS) and Scalable Parallel Computing Lab (SPCL), ETH Zürich, Switzerland

Polling-free synchronization?

exciting, right? find out more!

Implement and evaluate on MemPool

sriedel@iis.ee.ethz.ch

Concurrent algorithms require synchronization
• Blocking synchronization: Locks
→ Polling shared resources

• Non-blocking synchronization: CAS, LR/SC
→ Retry failed attempts Eliminate

polling during 
synchronizationPolling limits performance

• Wasted work during 
unsuccessful attempts

• Contention for shared resources 
with cores doing work

pulp-platform.org

Efficient hardware implementation

@pulp_platform

Colibri: Building a distributed queue

◁ open-source on GitHub! sriedel@iis.ee.ethz.ch

LRA SC

LRB SC

LRC SC

LR SC

LR SC LR SC

LRA SC

LRB

LRC

SC

SCwait

wait

Fails lead 
to retries

Move the linearization point from the SC to the LR
• Decide who ’wins’ the SC already at the LR
• Only one core executes an LR/SC pair at once

Eliminate
retries

LRSCwait

Memory

Controller

Head ↦ A

Tail ↦ B

Qnode ↦ B

Qnode ↦ ∅

Core A

Core B

❶ LRwait request

❷ LRwait response

❸ LRwait request

❹ SuccessorUpdate

Memory

Controller

Head ↦ B

Tail ↦ B

Qnode ↦ ∅

Qnode ↦ ∅

Core A

Core B

❺ SCwait request

❻ WakeUp request

❼ LRwait response

Core (×n)

Reservation
Table (n×m)

Memory Bank (×m)

Core (×n)

Reservation
Queue (n×m)

Memory Bank (×m)

LRSC
• Reservation 

Table for each 
memory

• Large overhead

Core (×n)

Tail+Head (×m)

Memory Bank (×m)

Qnode (×n)

↦

LRSCwait Ideal
• Reservation 

Queue for each 
memory

• Large overhead

LRSCwait Colibri
• Distributed Queue
• Pointer at memory
• Qnode at cores

• Small overhead

Core A issues a SCwait

Core A and B issue a LRwait

• A 256-core system with 1024 memory banks (1MiB)
• Implemented in GlobalFoundries’ 22nm process
• Colibri comes with only a 6% area overhead

Evaluate the 
throughput of 
different atomic read-
modify-write 
operations and lock 
implementations at 
varying levels of 
contention.

LRSCWait Colibri is 
13% faster than LRSCColibri is up to 6.5× 

faster than LRSC

Compare concurrent queue implementations.

Colibri improves energy efficiency by 
up to 7.1× compared to LRSC 

by eliminating polling and interference.

Consistent high 
throughput (9×)

1.5× better 
performance


