ETHzurich

LMA MATER STUDIORUM
NIVERSITA DI BOLOGNA

«»PULP

Parallel Ultra Low Power

Optimizing Offload Performance In
Heterogeneous MPSoCs

Luca Colagrande’, Luca Benini'~?

"Integrated Systems Laboratory, ETH ZUrich; “DEI, University of Bologna

1 Introduction

Heterogeneous multi-core architectures combine on a single
chip a few “host” cores, optimized for single-thread
performance, with many small energy-efficient “accelerator”
cores for data-parallel processing. Offloading a computation to
the accelerator introduces a communication and synchronization
cost which reduces the attainable speedup, particularly for small
and fine-grained parallel tasks. It is the programmer’s
responsibility to define the workload partition between the host

3 Results and Discussion

All experiments are conducted through cycle-accurate RTL
simulations, assuming a 1 GHz clock frequency.

We measure the runtime of an offloaded 1024-size DAXPY job
with and without our extensions, for various number of clusters
selected (left). Notably, the baseline presents a minimum, as the
offload overheads o< nr. clusters. With our extensions this is
no longer the case, yielding speedups o< nr. clusters.

and the accelerator, and making a correct offload decision is
non-intuitivel'l. This decision is about determining 1) if a portion of LU Sy o =
the workload can benefit or not from offloading, 2) the specifics | —A— baseline

on how to offload the workload, e.g. how many cores to employ,

which can have a significant impact on performance!?.

-@— 4 clusters
~x- 8 clusters
-— 16 clusters
- 32 clusters

O

o

o
|

Runtime [ns]
(0]
(]
o
|

700 —

2 Implementation

Problem size

Nr. clusters

We developed this study on the fully open-source Manticore
MPSoClP! enabling a complete understanding of the offload

We measure the speedup of the DAXPY job with our extensions,
overhead cycles.

for different problem sizes (right). We find the speedup o<
(problem size)?, as the offload overheads constitute a smaller

Narrow SPM Peripherals Wide SPM _ _ .
CVAG fraction of the overall computation for larger problem sizes.

512 KB incl. CLINT 1 MB
64b{ 1 64b §’ 64b {1 512b%]
64b AXI Crossbar]] _
64by’ We develop a quantitative model for the runtime of an offloaded

64b AXI Crossbar DAXPY kernel of size N onto M clusters, with an error <1%,
allowing to formulate the offload decision as an optimization

B1 B2 B31

N 4 KB 4KB | 4 KB - problem:

| fe4b te4b Yedb 64p &|: Lo (M, N) = 367 N 26-N
g Shared L1 Scratchpad Crossbar offi)) — | A ! Q. M
é _ _

2

3

cco] cc1 BEEEM cc7 CCB
LOIS B 10I$ LOI$ LO I$

4 4 %64p

4 Conclusion

Cluster 1
Cluster 3
Quadrant 7
512b AXI Crossbar

Shared L1 1$

Periph.

512b AXI Crossbar L L We showed that:
512b%) 512b 512b

1. co-designing the hardware and offloading routines can
512b AXI Crossbar : : :
51251, improve the speedup of an offloaded application by as much
512b AXI Crossbar as 47.9%, as measured on a fine-grained DAXPY kernel
2. optimizing the offload overheads is most significant for

We extended Manticore to support multicasting data from CVA6 accelerators with high core counts and fine-grained jobs

(the host) to the individual accelerator clusters. To this end, we 3. it is possible to derive an accurate model of the offloading
designed: overheads, and overall offload runtime, which can be used

1. a multicast-capable AXI interconnect to formulate the offload decision as an optimization problem.

2. a multicast-capable CVAG load-store unit
We co-designed the offload routines, using multicast to dispatch
the job information to all accelerator clusters in parallel.

References

We further designed a dedicated jOb COmpletiOn unit tO Speed [1] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing”, IISWC, 2009.

up the accelerator-to-host synchronization at the end of a job, by
removing the overhead introduced by atomic operations.

[2] G. Araujo et al., “Nas parallel benchmarks with cuda and beyond”, Software: Practice and Experience, vol.
53, no. 1, 2023.

[3] F. Zaruba et al., “Manticore: A 4096-core risc-v chiplet architecture for ultraefficient floating-point computing,”
Proc. of the IEEE Micro, vol. 41, no. 2, 2021.

