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1 Introduction

Heterogeneous multi-core architectures combine on a single
chip a few “host” cores, optimized for single-thread
performance, with many small energy-efficient “accelerator”
cores for data-parallel processing. Offloading a computation to
the accelerator introduces a communication and synchronization
cost which reduces the attainable speedup, particularly for small
and fine-grained parallel tasks. It is the programmer’s
responsibility to define the workload partition between the host

3 Results and Discussion

All experiments are conducted through cycle-accurate RTL
simulations, assuming a 1 GHz clock frequency.

We measure the runtime of an offloaded 1024-size DAXPY job
with and without our extensions, for various number of clusters
selected (left). Notably, the baseline presents a minimum, as the
offload overheads o< nr. clusters. With our extensions this is
no longer the case, yielding speedups o< nr. clusters.

and the accelerator, and making a correct offload decision is
non-intuitivel'l. This decision is about determining 1) if a portion of LU Sy o =
the workload can benefit or not from offloading, 2) the specifics | —A— baseline

on how to offload the workload, e.g. how many cores to employ,

which can have a significant impact on performance!?.
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2 Implementation

Problem size

Nr. clusters

We developed this study on the fully open-source Manticore
MPSoClP! enabling a complete understanding of the offload

We measure the speedup of the DAXPY job with our extensions,
overhead cycles.

for different problem sizes (right). We find the speedup o<
(problem size)?, as the offload overheads constitute a smaller
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CVAG fraction of the overall computation for larger problem sizes.
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64b AXI Crossbar DAXPY kernel of size N onto M clusters, with an error <1%,
allowing to formulate the offload decision as an optimization
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4 Conclusion
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1. co-designing the hardware and offloading routines can
512b AXI Crossbar : : :
51251, improve the speedup of an offloaded application by as much
512b AXI Crossbar as 47.9%, as measured on a fine-grained DAXPY kernel
2. optimizing the offload overheads is most significant for

We extended Manticore to support multicasting data from CVA6 accelerators with high core counts and fine-grained jobs

(the host) to the individual accelerator clusters. To this end, we 3. it is possible to derive an accurate model of the offloading
designed: overheads, and overall offload runtime, which can be used

1. a multicast-capable AXI interconnect to formulate the offload decision as an optimization problem.

2. a multicast-capable CVAG load-store unit
We co-designed the offload routines, using multicast to dispatch
the job information to all accelerator clusters in parallel.
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