ETHzurich

Designing and Scaling Versatile Manycore Systems

Samuel uca -TH Zurich, Switzerland

Riedel advised by Benini at Integrated Systems Laboratory (11S),

Massively parallel and versatile?

Memory (1024 Banks, TMiB)

T

Interconnect (<5

Modern Workloads Challenges In scaling:

* Machine Learning
« Computational Photography
« Communication

« Graph processing

« Connect hundreds of cores to thousands
of memory banks with a low latency

- Simple but latency-tolerant cores
« Physical implementation
- Synchronizing hundreds of cores

- High performance and efficiency for
irregular and regular workloads

- Emulating massively parallel systems

cycles latency)

Can we run all
modern applications
efficiently on one
architecture?

Shared-memory cluster

Requirements

» Massively parallel - manycore
» Fast evolving — programmable
« Power budget — energy-efficient

+ Individually programmable cores

+ Flexible memory access patterns

+ Widely used (GPU, accelerator)

= Limited scalability?

Programming and performance?

. Easy to program
A hierarchical design allows scaling to up to 256 cores, sharing access to 1024 memory | g Ruzt gpenI\/IP Halide

banks with less than five cycles of latency, which can be hidden by latency-tolerant . GCC, LLVM with instruction scheduling
RISC-V cores. A hierarchical DMA and L2 interconnect move data in and out. Versatile and flexible

« DSP kernels, ray tracing, 5G communication,
transformer models

High performance

» Hide latencies and achieve close to ideal scaling

MemPool: Scaling the shared-memory cluster

MemPool Cluster
256 cores

1024 SPM banks = 1 MiB
5 cycles latency

MemPool Group
64 cores, 256 SPM banks
3 cycles latency

MemPool Tile
4 32-bit cores, 16 SPM banks

Single-cycle memory access

Northeast 1\

Scratchpad Memory

\‘ Minimal architectural stalls
T,|e | oo oo e = Utilization| |IPC
‘
“‘I Synchronization 1S RAW‘
A

Tile Tile
<=
12 13

Group 2
Tile 32- 47

Group 3

Tile 49-63 Instructions Stalls

2d
Cc;mt/ 66% MAC unit utilization
C

axpy
dotp

Interconnect

-
-
-

LO IS LO IS

I 1 I I

Shared L1 Instruction Cache

3

Group 0 Group 1

Tile 16-31

| H
@D

Tile O-15

I I S S S .. -‘.-’IE:-

II|

lll“‘-
L N N B N N BN N N N N § B N B 8 N N N § N N N §N § |

0% 20% 40% 60% 80% 100%

Hybrid-Systolic-Shared-Memory Polling-free Synchronization Emulating manycore systems

Fails lead

: « Banshee: A functional simulator designed to
to retries

simulate hundreds of cores

» Enable efficient systolic execution on
MemPool through lightweight extensions.

e Allow fast core-to-core communication
between any cores.

- Allow arbitrary systolic topologies.

- Combine shared-memory and systolic
execution to achieve optimal performance.

> Efficiently execute systolic workloads while
keeping the flexibility of the shared-memory

system
15% faster than

shared-memory

sharedrmemory [N N

2X2
3X3
3x4

Systolic

Tiled 16x16
With mover PE
Row-wise 16x16
+ Row-wise 8x32

Hybrid

_
0 50 100 150 200 250 300
Throughput (Ops/cycle)

g < open-source on GitHub!

Designed for cluster-based architectures

with LRwait
R o SO -
Eliminate
.’ LR —>E .
—E retries

» QOrder atomic operations at the LRwait
instruction instead of SCwait

« Build a queue of reservations

 Release the next reservation after each SC
e Colibri: Build a scalable, hardware-efficient

distributed queue
* Eliminate retries and polling.
« Better fairness and performance.
« Qutperforms LR/SC by a factor of 6.5x
« 8.8Xx more energy efficient.

NA sriedel@iis.ee.ethz.ch

« Easily extensible

 Static binary translation

* |nstruction accurate

 Emulates up to 72 GIPS

« T1.5times faster in single-core scenario

» Up to 44x faster for manycore simulations

100,000 R
—2dconv "

%) QWP f
A —dct pe ::
S _ Z :
= 10,000 matmul ii
W :
ad %8
5 T
o 1,000 L
) o
= &F
2 X

100 :

1 2 4 8 16 32 64 128 256

Simulated Cores

#® pulp-platform.org 9% @pulp_platform

