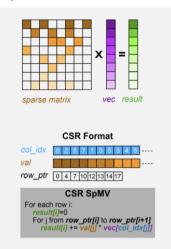


Near-Memory Parallel Indexing and Coalescing: Enabling Highly Efficient Indirect Access for SpMV


Chi Zhang¹, Paul Scheffler¹, Thomas Benz¹, Matteo Perotti¹, Luca Benini^{1,2} ¹Integrated Systems Laboratory, ETH Zurich; ²DEI, University of Bologna

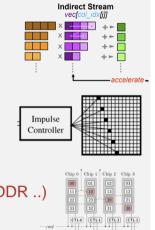
1 SpMV Challenges on General-Purpose Architecture 2 Near-Memory Indirect Stream to the Rescue

 Indirect addressing Complicates access flows Low computation utilization

Irregular memory access patterns

Cache trashing & pollution Low bandwidth efficiency Long latencies

 Handle indirect accesses near memory Stream indirect elements from main memory Smart Memory Controllers^[1]


Scatter-Gather DRAM^[2]

Previous solutions

Rely on low-granularity (64b) channel

No good solution to modern DRAMs (HBM, LPDDR ..)

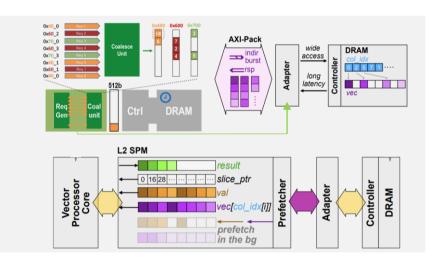
~512b access granularity

Can we efficiently stream indirect accesses from modern DRAMs without introducing large caches?

3 Our Proposal: MLP + Coalescence

To efficiently handle Indirect stream on modern DRAMs

Leverage memory-level parallelism (MLP) of indirect stream Leverage parallel coalescence of narrow and sparse accesses


Implement AXI-Pack adapter for efficient indirect stream from DRAMs

AXI-Pack^[3] is a recently proposed extension to AXI4 on-chip protocol

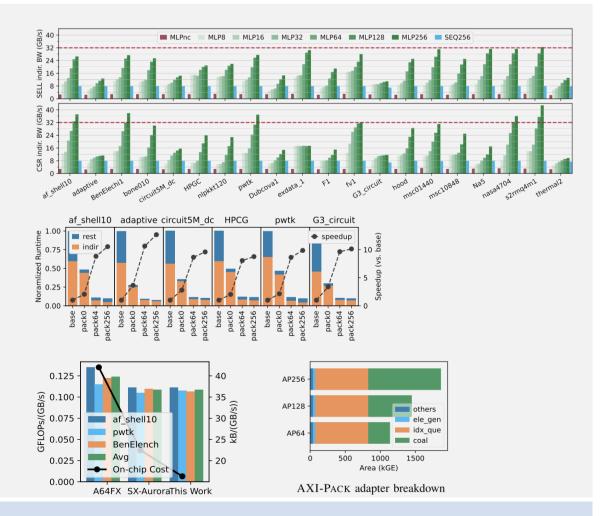
AXI-Pack Support stride and indirect bursts

We extend AXI-Pack adapter's indirect stream unit

Integrate into an open-source RISC-V vector processor system

5 Results

8x


increase in indirect access bandwidth

speedup in SpMV performance

vs. baseline RISCV vector processor with 1MB LLC

2.6× superior on-chip efficiency

vs. SoA vector processors

References

- 1. Carter, John, et al. "Impulse: Building a smarter memory controller." Proceedings Fifth International Symposium on High-Performance Computer Architecture. IEEE, 1999.
- 2. Seshadri, Vivek, et al. "Gather-scatter DRAM: In-DRAM address translation to improve the spatial locality of non-unit strided accesses." Proceedings of the 48th International Symposium on Microarchitecture. 2015.
- 3. Zhang, Chi, et al. "AXI-pack: Near-memory bus packing for bandwidth-efficient irregular workloads." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2023.