Memory and Latency Efficient On-Device Continual Learning: Trends & Tricks

Manuele Rusci, KU Leuven
manuele.rusci@kuleuven.be
Recap: ODL costs

Forward, a.k.a. inference

\[y_{i+1} = w_i \cdot y_i \]

Working Mem* \[\max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

Parameters \[\sum sz(w_i) \]

* assume layer-wise execution, sample-by-sample

\(sz(\cdot) \) returns the number of elements

Convolution Layer \(i \)

DATE24 tutorial - M. Rusci
Recap: ODL costs

Backward the input gradients

\[G_y = w_i \cdot G_{y_i+1} \]

\[y_{i+1} = w_i \cdot y_i \]

\[\text{Working Mem}* = \max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

\[\sum sz(w_i) \]

- \(sz(\cdot) \) returns the number of elements
- * assume layer-wise execution, sample-by-sample

\[G_x = \frac{\partial L}{\partial x} \]

Convolution Layer \(i \)

\[y_i = w_i \cdot y_{i-1} \]

\[G_y = w_i \cdot G_{y_i+1} \]

Parameters

\[\sum sz(w_i) \]

\[\text{Working Mem}* = \max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

\[\sum sz(w_i) \]

\[\text{Working Mem}* = \max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

\[\sum sz(w_i) \]

\[\text{Working Mem}* = \max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

\[\sum sz(w_i) \]

\[\text{Working Mem}* = \max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

\[\sum sz(w_i) \]
Recap: ODL costs

Backward the weight gradients

- Working Mem* \(\max (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \)
- Parameters \(\sum sz(w_i) \)
- Weight Gradients \(\sum sz(G_{wi}) (== \sum sz(w_i)) \)
- Activation Storage for BW \(\sum sz(y_i) \cdot N_{data_b} \)
- Data/Replay Mem Buffer \(N_{batch} \cdot N_{data_b} \cdot sz(data) \)

\(sz(\cdot) \) returns the number of elements
* assume layer-wise execution, sample-by-sample

Note: \(G_x = \frac{\delta L}{\delta x} \)
Recap: ODL costs

\[T = E \cdot N_{\text{batch}} \cdot N_{\text{data b}} \cdot (T_{\text{FW}} + T_{BW_{wg}} + T_{BW_{wg}}) \]

- **#epochs**
- **#batches**
- **#data per batch**

Online (Streaming) Learning:
\[N_{\text{data b}} = 1 \text{ and } E = 1 \]

Working Mem
\[\text{max} (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

Parameters
\[\sum sz(w_i) \]

Weight Gradients
\[\sum sz(G_{w_i}) (== \sum sz(w_i)) \]

Activation Storage for BW
\[\sum sz(y_i) \cdot N_{\text{data b}} \]

Data/Replay Mem Buffer
\[N_{\text{batch}} \cdot N_{\text{data b}} \cdot sz(\text{data}) \]

Note:
\[sz(\cdot) \text{ returns the number of elements} \]

* assume layer-wise execution, sample-by-sample
Recap: ODL costs

\[T = E \cdot N_{batch} \cdot N_{data_b} \cdot (T_{FW} + T_{BW_{wg}} + T_{BW_{wg}}) \]

- **#epochs**
- **#batches**
- **#data per batch**

Online (Streaming) Learning:
\[N_{data_b} = 1 \text{ and } E = 1 \]

Working Mem*
\[\text{max } (sz(y_i) + sz(y_{i+1}) + sz(w_i)) \]

Parameters
\[\sum sz(w_i) \]

Weight Gradients
\[\sum sz(G_{w_i}) (== \sum sz(w_i)) \]

Activation Storage for BW
\[\sum sz(y_i) \cdot N_{data_b} \]

Data/Replay Mem Buffer
\[N_{batch} \cdot N_{data_b} \cdot sz(data) \]

Problem: High latency and (activation) memory costs

Notes:
- sz(·) returns the number of elements
- Assume layer-wise execution, sample-by-sample

Diagram:
- New data
- Replay data
- Loss
- Convolution Layer \(i \)
 \[y_{i+1} = w_i \cdot y_i \]
 + storing \(y_i \)
 \[G_{y_i} = w_i \cdot G_{y_{i+1}} \]
 \[G_{w_i} = y_i \cdot G_{y_{i+1}} \]
- Forward (\(F_W \))
- Backward input gradient (\(B_{W_{ig}} \))
- Backward weight gradient (\(B_{W_{wg}} \))

DATE24 tutorial - M. Rusci
Efficient Trainable Models

Update only few layers (w_1, w_3)
- ✓ Lower backward time ($T_{BW_{ig}}, T_{BW_{wg}}$) vs. full-backprop
- ✓ Lower gradient & activations vs. full-backprop
- ✗ Lower accuracy than full-backprop

- Retraining only the last layer on MCUs, e.g. TinyOL [Ren2021]
- First layers have larger activation sizes (and more generic features): keep them frozen!
TinyTL: Tiny Transfer Learning [Cai2020]

Retraining only the biases

\[y_{i+1} = w_i \cdot y_i + b_i \rightarrow G_{b_i} = G_{y_{i+1}} \]

does not depend from \(y_i \)
Retraining only the biases

\[y_{i+1} = w_i \cdot y_i + b_i \rightarrow G_{b_i} = G_{y_{i+1}} \]

doest not depend from \(y_i \)

Lite Residual Modules (LRM)

\[y_{i+1} = w_i \cdot y_i + b_i + f_w^r(y'_i = pool(y_i)) \]

TinyTL: Tiny Transfer Learning [Cai2020]
(Structured) Sparse Updates

Pruning weight gradient computation BW_{wg} (and BW_{ig}) of less important weight or sub-tensors [Lin2022][Kwon2023]

- High transfer learning capacity (less overfitting vs. full-retraining) but $4.5-7x$ memory saving [Lin2022]

Which weights to update?
- Evolutionary search (offline) with a per-layer contribution as the cost function [Lin2022]
- Multi-objective cost w/ Fisher information (online) [Kwon2023]
“Removing” the Memory Constraints

Update all parameters without storing the activations

- Activation tensors are recomputed layer-wise backward
“Removing” the Memory Constraints

Update all parameters **without** storing the activations

- Activation tensors are recomputed layer-wise backward

Only stores some **checkpoints** for faster training

- Convenient to recompute cheap-to-compute yet memory-intensive tensors, e.g., ReLU layers.
- **DaCapo** [Khan2023]
 - Exhaustive search to select checkpoints (w/ mem and latency constraints)
- **POET** [Patil2022]
 - Mixed Integer Linear Programming
 - Combined with paging: activations copied to off-chip memories
 - Trains ResNet-18 and BERT on tiny ARM Cortex M class devices

DATE24 tutorial - M. Rusci
Other Relevant Tricks

- Batch Norm requires large batch sizes for accurate stats
 - **Group Norm** for small batch size [Cai2020]

- **Lossless** Low-precision training
 - Mixed-precision Training (FP32+FP16) [Narang2017]
 - INT8 [Lin2022] with Quantization-Aware Scaling: $G_W = G_W \cdot s_w^{-2}$

- Replay Storage (& activation)
 - Low-bitwidth quantization (≤8-bit) [Ravaglia2021]
 - Product Quantization (PQ) compression [Hayes2020]
What is (or can be) next!

➢ HW-SW co-design for ODL for real-world continual learning benchmarks
 ▪ Training algorithms under memory and latency constraints
 ▪ Absence of or few labels available for continual learning
 ▪ Few-shot & auxiliary tasks
 ▪ Convergence time of the training algorithms (#epochs, #data)
 ▪ Under-explored domain.

➢ Applications of On-Device Continual Learning
 ▪ Detaching from “classic” benchmark datasets (Cifar10, Mnist, …)

➢ Novel MCU HW architectures
 ▪ Always-on inference + occasionally training
 ▪ New opportunities for heterogeneity
Reference

Questions

Manuele Rusci, KU Leuven
gmanuele.rusci@kuleuven.be

Davide Nadalini, Università di Bologna
d.nadalini@unibo.it

Cristian Cioflan, ETH Zürich
cioflanc@iis.ee.ethz.ch