IEEE DCOSS-IoT 2023

INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS

Land & Localize: An Infrastructure-free and Scalable Nano-Drones Swarm with UWB-based Localization

Mahyar Pourjabar¹, Ahmed AlKatheeri², Manuele Rusci³, Agata Barcis² Vlad Niculescu⁴, Eliseo Ferrante², Daniele Palossi⁵⁴, Luca Benini¹⁴

¹ DEI - University of Bologna, Italy
² Technology Innovation Institute, UAE
³ KU Leuven, Belgium

⁴IIS - ETH Zurich, Switzerland ⁵IDSIA, USI and SUPSI, Switzerland

1

Why Nano-Drone Swarm?

What are Nano-drones?

- Small form factor (~10cm)
- Limited payload (~15g)
- Limited computing power budget (<100mW)

standard-size UAV	micro-size UAV	nano-size UAV	
~20 cm	~10 cm	B ~5 cm	
UAV	Sta	ndard-sized	Nano-sized
Size [ø, we	eight] ~50	cm / ~ few Kg	~10cm / ~50g
Tot. Pow	/er	~ 100 W	~ 5W
Processing	dovico Hi	ah-end CPU	Low-power MCU

Why Nano-Drone Swarm?

What are Nano-drones?

- Small form factor (~10cm)
- Limited payload (~15g)
- Limited computing power budget (<100mW)

standard-size UAV	micro-size UAV	nano-size UAV	
~20 cm	~10 cm	~5 cm	
UAV	Sta	ndard-sized	Nano-sized
	aight] ~50	rm / ~ few Ka	$\sim 10 \text{ cm} / \sim 50 \text{ g}$
Size [ø, we	signij ~500		~100m7 ~30g
Size [ø, we Tot. Pow	ver	~ 100 W	~ 10cm7 ~50g ~ 5W

- Small form factor enabling indoor applications
- Ensure safe Human-Robot Interaction (HRI)
- Reduced costs

Localizing Nano-Drone Swarm

What is Localization?

• Localization is the ability of the Swarm agents to identify their positions

Localizing Nano-Drone Swarm

What is Localization?

• Localization is the ability of the Swarm agents to identify **their positions**

Why Localizing a Nano-Drone Swarm?

- A Wide range of **indoor applications** can benefit from the Nano-Drone swarm
- Localization is a key for any Nano-drone Swarm applications

Indoor Inspection*

Flight Formation

Research

Common indoor positioning approaches

Common indoor positioning approaches

UWB-Localization & challenges

UWB Ranging

UWB-Localization & challenges

2. Anchors' positions must be known

UWB-Localization & challenges

Contribution

Infrastructure-less UWB localization systems

- (1) Exploiting **Drones as Dynamic Anchors** to provide anchor deployment at run-time
- (2) A Self-Localization system to compute anchor drones' initial position
- (3) An open-source UWB Software Library (USL) enabling fast prototyping of UWB localization

Ideal Landing

Dynamic Anchors

Self-localize

Dynamic Anchor

Anchor

Infrastructure

More Flexible Systems

UWB Software library (USL)

- An open-source Library
- High-level API
- Enable Fast prototyping
- Minimal interaction with HW-level complexities

GitHub: https://github.com/vladniculescu/uwb-software-library

Assumptions:

- Anchor installation
- Anchors' positions must be *known*

Assumptions:

- Anchor installation
- Anchors' positions must be *known*

Dynamic Anchor System

Navigation based only on the onboard state estimation (Optical-Flow, IMU)

There is an **error** between target landing point and the actual one

Dynamic Anchor System

Dynamic Anchor System

Convention:

ADs placed in unknown positions

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

Communication flow:

1. AD0 broadcasts a UWB message to all Ads

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N
- 4. ADs send all measurements to AD0

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N
- 4. ADs send all measurements to AD0
- 5. AD0 builds the distance matrix D and runs **Multi-Dimensional Scaling** (MDS)

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N
- 4. ADs send all measurements to AD0
- 5. AD0 builds the distance matrix D and runs
- 6. AD0 sends the coordinates to AD1..N

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N
- 4. ADs send all measurements to AD0
- 5. AD0 builds the distance matrix D and runs
- 6. AD0 sends the coordinates to AD1..N
- 7. ADs know their relative position

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N
- 4. ADs send all measurements to AD0
- 5. AD0 builds the distance matrix D and runs
- 6. AD0 sends the coordinates to AD1..N
- 7. ADs know their relative position
- 8. ADs fly toward the target landing point

Convention:

- ADs placed in unknown positions
- AD0 act as the origin of the coordinate system
- AD0 AD1 form x-coordinate
- AD2 considered the positive y-coordinate

- 1. AD0 broadcasts a UWB message to all Ads
- 2. The ADs take off and hover at 0.5m
- 3. ADi does ranging with AD(i+1)..N
- 4. ADs send all measurements to AD0
- 5. AD0 builds the distance matrix D and runs
- 6. AD0 sends the coordinates to AD1..N
- 7. ADs know their relative position
- 8. ADs fly toward the target landing point
- 9. Ranging starts and the MDs start flying

Experiment Setup

- 4 Anchor Drones
- 4-8 Mission Drones
- 3 times flying around a 1.5^[m] radius circle
- ~1 m/s velocity

Evaluation Metrics

- Localization RMSE
- Control RMSE

Experiment Setup

- 4 Anchor Drones
- 4-8 Mission Drones
- 3 times flying around a 1.5^[m] radius circle
- ~1 m/s velocity

Control RMSE

• Ideal • Estimation • Ground-truth

Experiment Setup

- 4 Anchor Drones
- 4-8 Mission Drones
- 3 times flying around a 1.5^[m] radius circle
- ~1 m/s velocity

Evaluation Metrics

Localization RMSE
 Control RMSE ----- Ideal
 GT

• Ideal • Estimation • Ground-truth

SolutionMission-droneAnchor-drone

Experiments with 4/8 MDs and 4 ADs:

• Flexibility at the cost of a higher localization error

^[1] Fixed 6x Anchor module setup using Bitcraze's UWB localization firmware as the baseline

In-field Results - self-localization

States Mission-drone Anchor-drone

Experiments with 4/8 MDs and 4 ADs:

- Flexibility at the cost of a higher localization error
- Self-Localization runs on-board in 5 sec

^[1] Fixed 6x Anchor module setup using Bitcraze's UWB localization firmware as the baseline

Results - Impact of AD self-localization

Solution Mission-drone Anchor-drone

Experiments with 4/8 MDs and 4 ADs:

- Flexibility at the cost of a higher localization error
- Self-Localization runs on-board in 5 sec

Localization Error is contributed by

- UWB Error (also on static anchors)
- Anchors' Landing Error

 Actual landing point
 Estimated landing point

^[1] Fixed 6x Anchor module setup using Bitcraze's UWB localization firmware as the baseline

• Ideal • Estimation • Ground-truth

Flight Formation^{*}

Longitude inter-drone distance always bounded below 13.7% i.e., ±15.6 cm

Demo

Setup

- 4 ADs and 8 MDs
- Dynamic Anchor Deployment
- MDs fly in a 1.5[m] circular trajectory

Dynamic Anchors

X Anchor-drone Mission-drone

Conclusion

Leveraging Nano-drone as Dynamic Anchor to eliminate the need for a static UWB infrastructure

Longitude inter-drone distance always <15.6 ^[cm] 25

IEEE DCOSS-IoT 2023

INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS

Thank you for your attention!

Mahyar Pourjabar

Ph.D. student at University of Bologna, Italy <u>mahyar.pourjabar2@unibo.it</u>

