

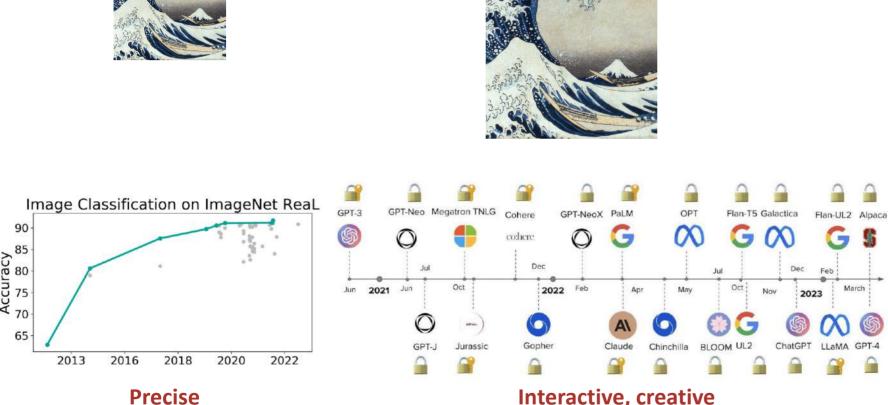
Toward Gen.Al Pervasive Intelligent Systems An Open RISC-V platform Approach

Luca Benini Ibenini@iis.ee.ethz.ch

PULP Platform Open Source Hardware, the way it should be!

@pulp_platform >> pulp-platform.org

Perception \rightarrow Gen.Al \rightarrow Pervasive Gen.Al

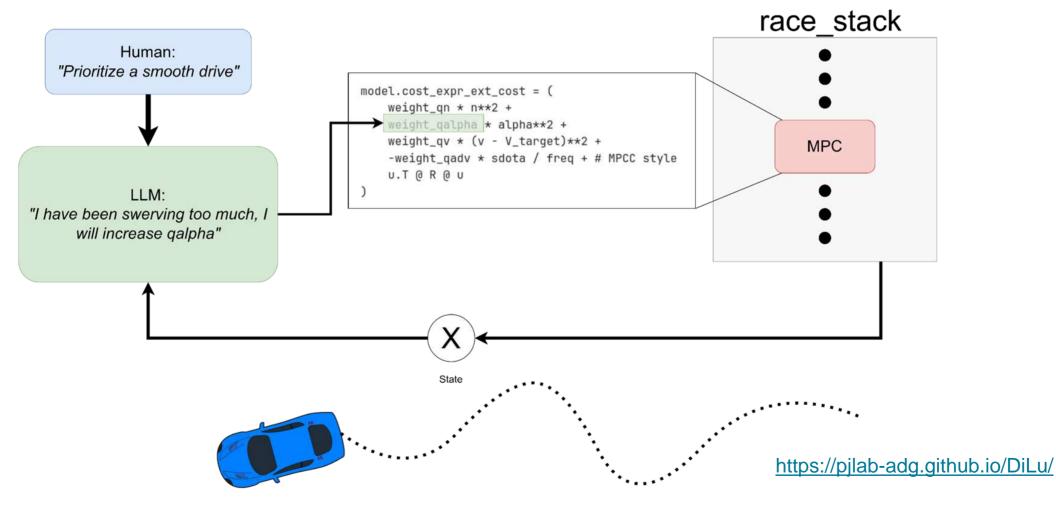


Interactive, creative

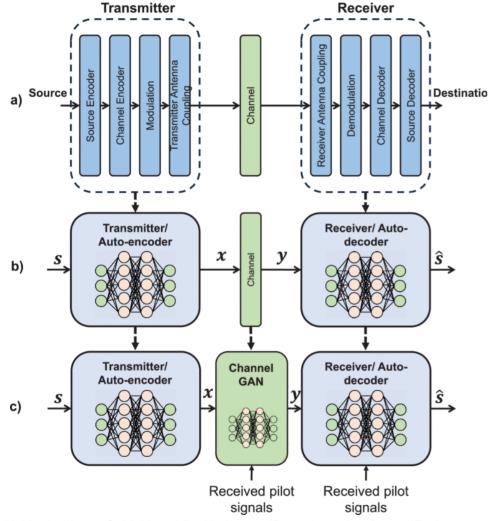
Efficient, RT-safe, secure

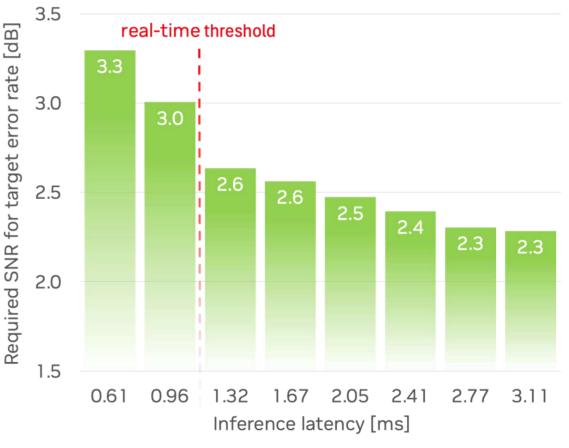
Pervasive Gen.Al: Robots

LLM Reasoning on Human Commands & Robot Observations



Pervasive Gen.AI: AI native Phy for RAN



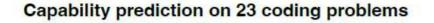


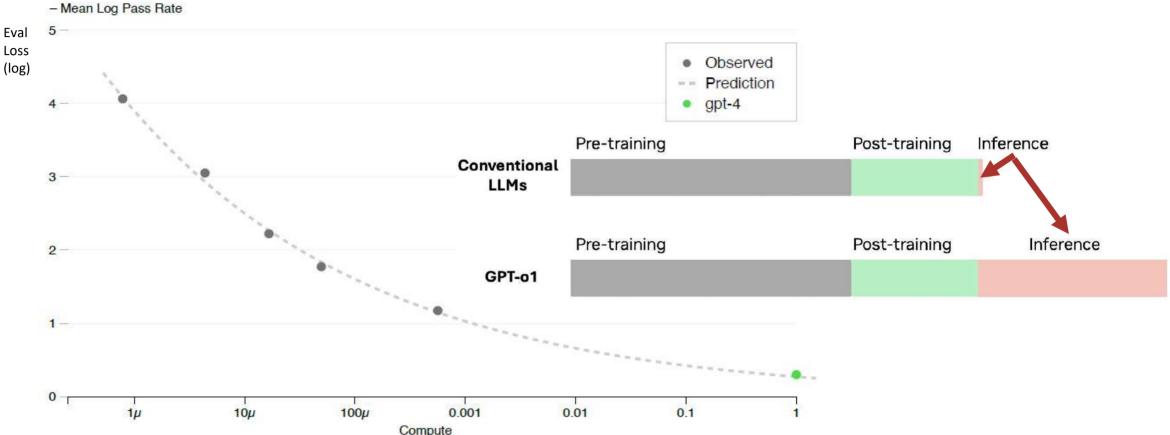
https://developer.nvidia.com/blog/real-time-neural-receivers-drive-ai-ran-innovation/

H. Ye, L. Liang, G. Y. Li and B. -H. Juang, "Deep Learning-Based End-to-End Wireless Communication Systems With Conditional GANs as Unknown Channels," IEEE Transactions on Wireless Communications, 19.5, (2020)

Pervasive Gen.AI Challenge

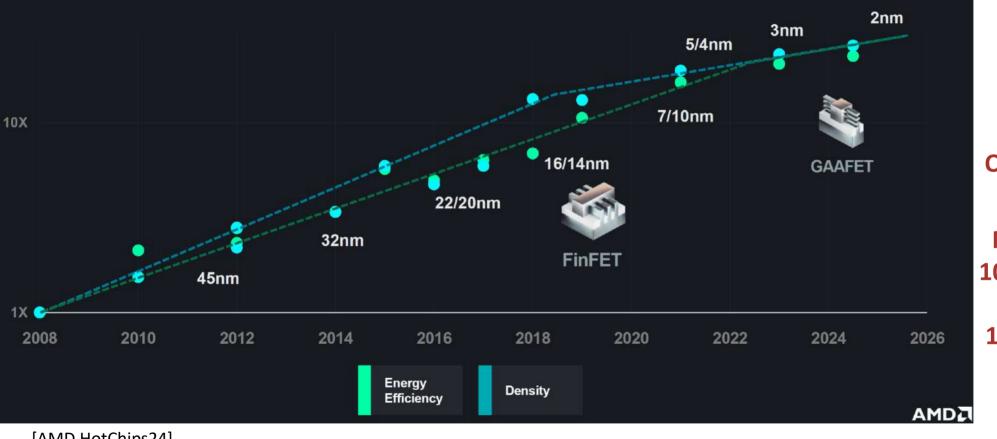
OpenAl'23 arXiv:2303.08774





Performance of GPT-4 and smaller models: y-axis mean log pass rate on a subset of the HumanEval dataset. Dotted line: A power law fit to smaller models (excluding GPT-4) \rightarrow Accurately predicts GPT-4's performance. x-axis is training compute (log)

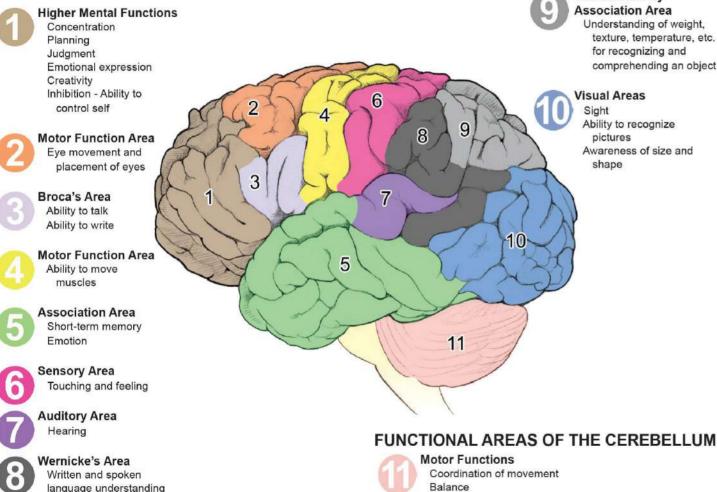
Technology is not Enough



On-car Computing P_{MAX} < 1.5 kW Model complexity 10× every ~2.5 years Moore's Law 10x every 12 years!

[AMD HotChips24]

Efficiency through Heterogeneity: Multi-Specialization Brain-inspired: Multiple areas, different structure different function!



ALMA MATER STUDIORUM

ETH zürich

Somatosensorv Association Area Understanding of weight. texture, temperature, etc. for recognizing and comprehending an object

100 THE TWO IS AND THE TWO IS AND THE HAILO Part of the second s and and Service allow NO

Hailo-10H M.2 Key M ET **Generative AI Acceleration** Module (40TOPs, few TOPs/W)

Looking up to the Leader

ALMA MATER STUDIORUM Università di Bologna

ETH zürich

Dally HotChips 2023

4000.00

Gains from Single-Chip Inference Performance - 1000X in 10 years 4500.00 H100 Number Representation . FP8 FP32, FP16, Int8 4000.00 . Transformer Eng (TF32, BF16) . 3500.00 ~16x 3000.00 **Complex Instructions** DP4, HMMA, IMMA 2500.00 nt 8 TOPS ~12.5x 2000.00 A100 Process . Structured Sparsity 28nm, 16nm, 7nm, 5nm 1500.00 1248.00 ~2.5x IMMA HMMA Int8 Tensor 1000.00 Tensor Cores **FP16** Sparsity Cores DP4A Scalar FP32 Q8000 • ~2x 500.00 V100 261.00 K20X P100 M40 125.00 21.20 3.94 6.84 0.00 Model efficiency has also 4/1/12 8/14/13 12/27/14 5/10/16 9/22/17 2/4/19 6/18/20 improved - overall gain > 1000x

10/31/21 3/15/23

Why NVIDIA owns the Market?

- It's the software → flexibility, fast evolution!
- Is there a way to Escape "NVIDIA gravity"?
- Need a standard to combat a monopoly

RISC-V°

RISC-V: The Free and Open RISC Instruction Set Architecture

RISC-V is a key enabler \rightarrow max agility, enabling SW build-up, without vendor lock-in

Heterogeneous, Multiscale Accelerated Computing

P U P

Multiple Scales of acceleration

Extensions to processor cores

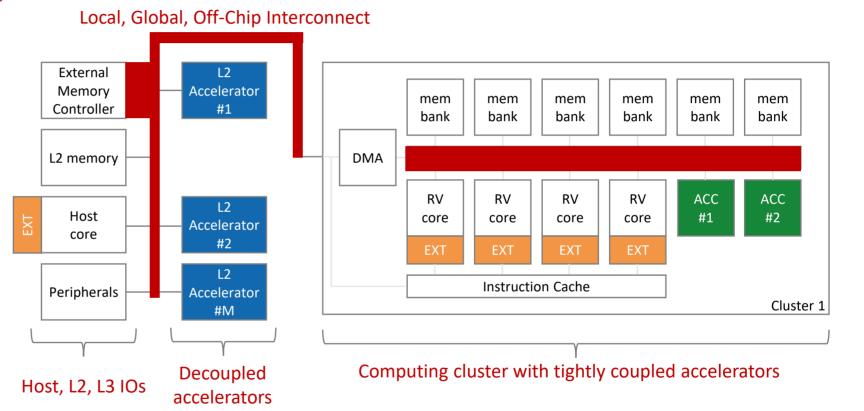
- Explore new extensions
- Efficient implementations

Shared-memory Accelerators

- Domain specific
- Local memory

Multiple Decoupled Accelerators

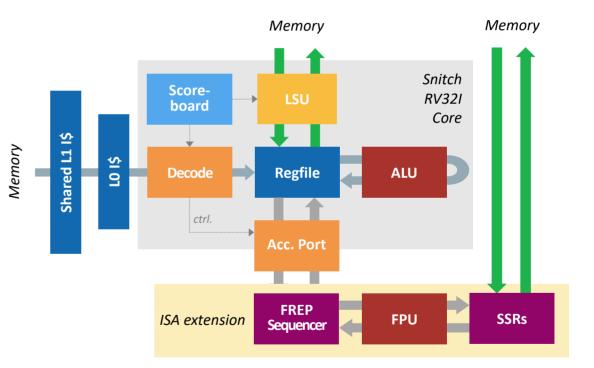
- Communication
- Synchronization



Specialize interconnects too! Local, global, package, system

Snitch Core: Tiny, Latency Tolerant, Extensible RV PE

- Snitch: tiny (20KGE), extensible RV core
 - Extensible through accelerator port
 - Latency-tolerant through scoreboard
 → can issue ~10 non-blocking memOPs
- Paired with ISA extension subsystem
- Native streaming support
 - Load/store elision
 - Reduction of I\$ pressure



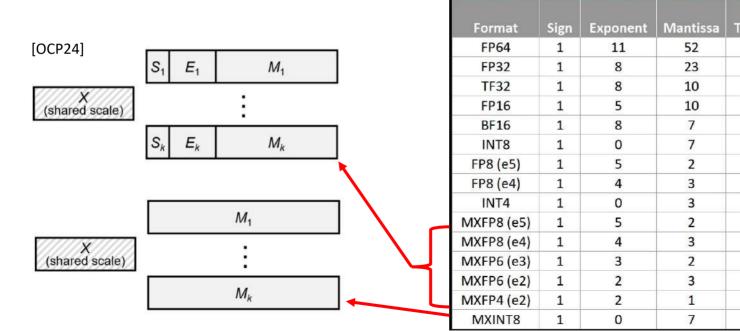
ISA Extension: quantization Galore

Extension for Low-Bitwidth INT (binay, ternary, crumble, nibble, byte) and FP

- Tensor unit support (being standardized now two versions: "attached" vs. "integrated")
- OCP *Microscaling* Formats (MX) \rightarrow RVV ISA is a good match
 - Version 1.0 published Sept 2023 Proponents: AMD, Arm, Intel, Meta, Microsoft, NVIDIA, Qualcomm
- Polynomial Approximation (PACE stay tuned)

ALMA MATER STUDIORUM

ETH zürich



MX Number Formats Block level Total bits per Total bits per Total bits block of 32 block of 64 exponent

[SemiAnalysis24]

SSR & FREP: Streaming Extension

- SSR: Link register read/writes into implicit LD/ST
 - Extension around the core's register file
 - Address generators (2-3KGE/SSR)

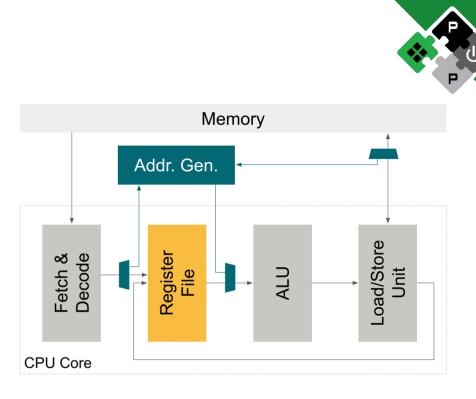
ETH zürich

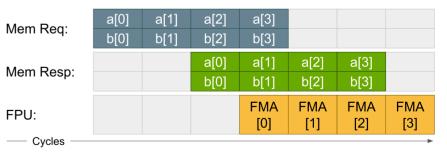
- Configured out of inner loop (LD/ST elision)
- Staggering: generators prefetch from memory (latency tolerant!)
- FREP: L0 instruction buffer (no I\$ access)

ALMA MATER STUDIORUM

- Pseudo-dual issue (Int pipeline can proceed in parallel)
- No boundary checking for loop (similar HW loop in DSPs)
- Boost FPU utilization → 100% (once setup is amortized)

dotp: 30% FPU	dotp: 90% FPU
loop: fld r0, %[a] fld r1, %[b] fmadd r2, r0, r1	<pre>scfg 0, %[a], ldA scfg 1, %[b], ldB loop: fmadd r2, ssr0, ssr1</pre>





Latency Tolerance: Less expensive than OoO (CPU) and Multi-threading (GPU)

Snitch Cluster: The Fundamental Compute Block

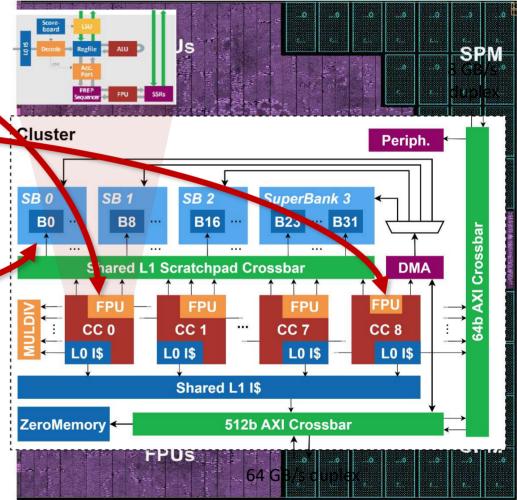
- 8 Snitch compute cores
 - SIMD 64b FPU with SSRs & FREP
- 9th Core: DMA engine -
 - 512b interface to interconnect
 - HW support for autonomous ≤ 2D transfers, higher dimensions through SW
 - Latency-tolerance block transfers (100s of cycles)
- 128 KiB TCDM

ETH zürich

- 32-bank, low-latency shared scratchpad
- Double-buffer large chunks with DMA

ALMA MATER STUDIORUM

- Shared TDCDM, I-cache and peripherals
- Shared DMA (10% overhead) for global latency tolerance



Specializing the Cluster for Gen.Al

• Attention is key

ETH zürich

• Attention matrix is a square matrix of order input length

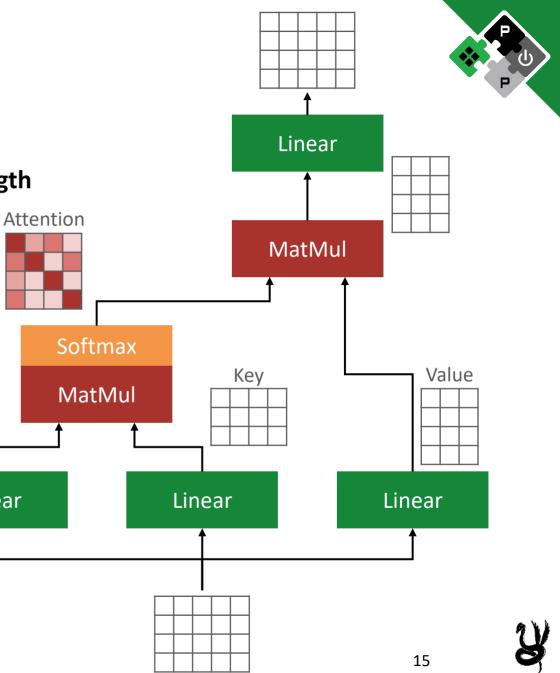
Query

Linear

- Quadratic memory requirement vs. sequence length
- No asymmetry between operands ("weightless")
- MatMul & Softmax dominate

Softmax(
$$\mathbf{x}$$
)_i = $\frac{e^{x_i - \max(\mathbf{x})}}{\sum_j^n e^{x_j - \max(\mathbf{x})}}$

ALMA MATER STUDIORUM



Matmul Benefits from Large Shared-L1 clusters

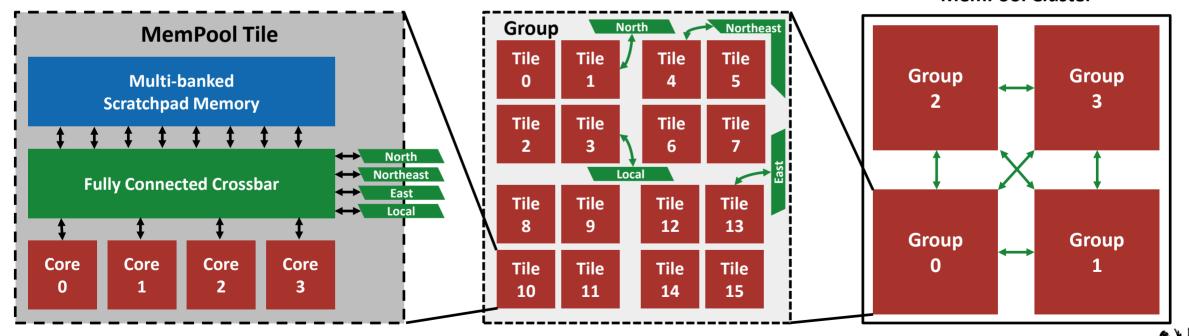
• Why?

ETH zürich

- Better global latency tolerance if $L1_{size} > 2 \times L2_{latency} \times L2_{bandwidth}$ (Little's law + double buffer)
- Smaller data partitioning overhead

ALMA MATER STUDIORUN

- Larger Compute/Boundary bandwidth ratio: N³/N² for MMUL grows linearly with N!
- A large "MemPool": 256+ cores and 1+ MiB of shared L1 data memory



MemPool Cluster

MemPool Cluster: A physical-aware design

- A Scalable Manycore Architecture with Low-Latency Shared L1 Memory
 - 256+ cores
 - 1+ MiB of shared L1 data memory
 - ≤ 8 cycle latency (Snitch can handle it)
- Hierarchical design
- Implemented in GF22
 - Targeting 500 MHz (SS/0.72V/125°C)
 - Reaching 600 MHz (TT/0.80V/25°C)
 - Targeting iso-frequency with PULP

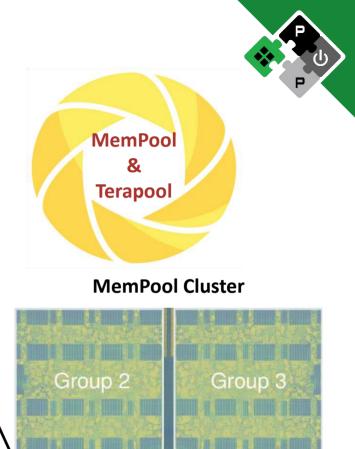
ALMA MATER STUDIORUM

- Cluster area of 13 mm²
 - 5 mm diagonal

ETH zürich

- Round trip in 5 cycles
- Terapool: 1024 Cores!

MemPool Group



Group

Group 0

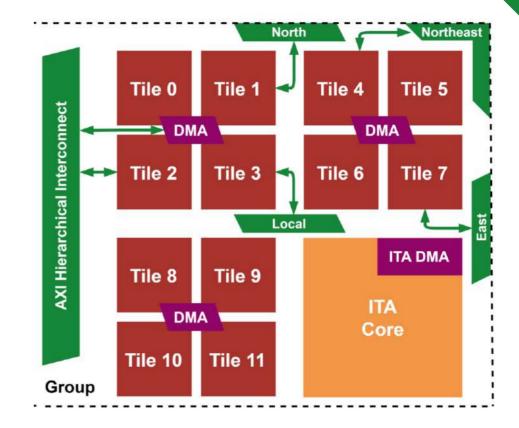
MemPool + Integer Transformer Accelerator (ITA)

Tightly coupled Acceleration Enginee

- Matmul & Softmax
- Reduce pressure on memory and interconnect

Collaborative Execution

- Cores prepare activations for the next attention head
- Final head accumulation computed in cores
- Nonlinearity in cores (PACE)



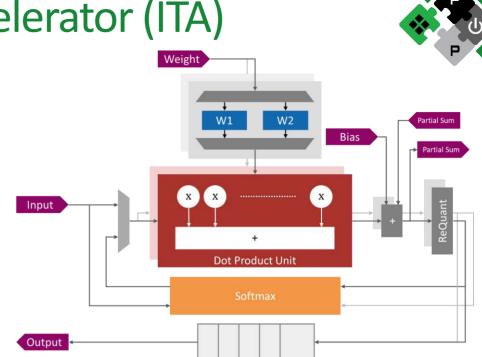
MemPool + Integer Transformer Accelerator (ITA)

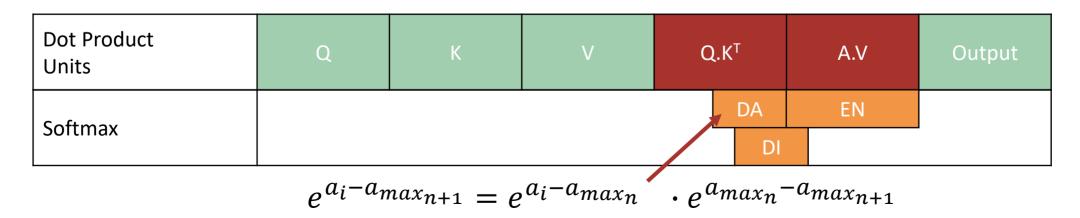
Integer Attention Accelerator

ETH zürich

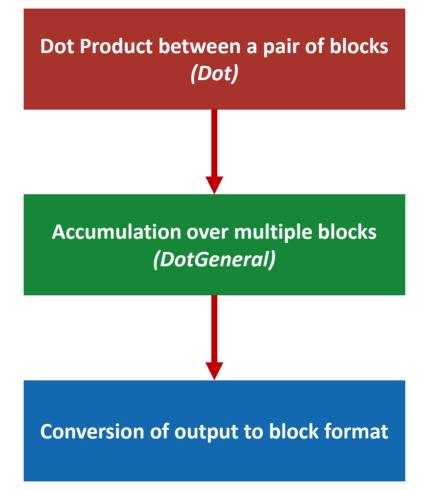
- 8-bit inputs, weights & outputs
- Builtin data marshaling & pipelined operation
- Streaming partial Softmax adding no additional latency
- Fused $Q \times K^T$, Softmax and $A \times V$ computation
- Support for hardware-aware Softmax approximation in QuantLib

ALMA MATER STUDIORUM





Extending ITA to MXTA



P b P

Attention on ITA

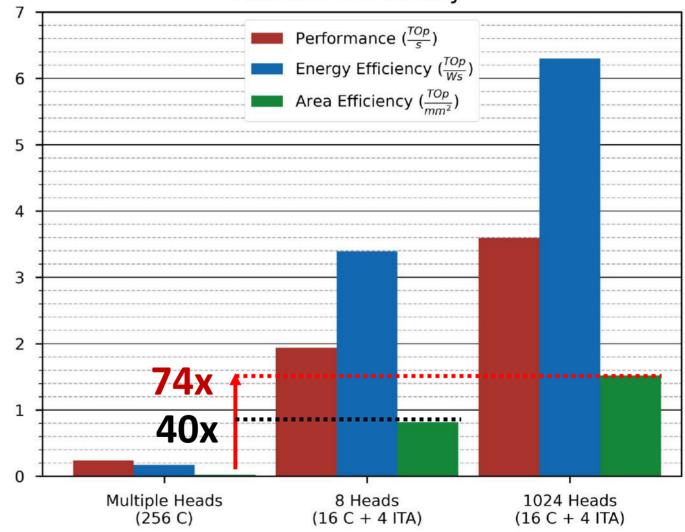
Performance increase of **15x**

Energy Efficiency increase of 36x

Area Efficiency increase of 74x

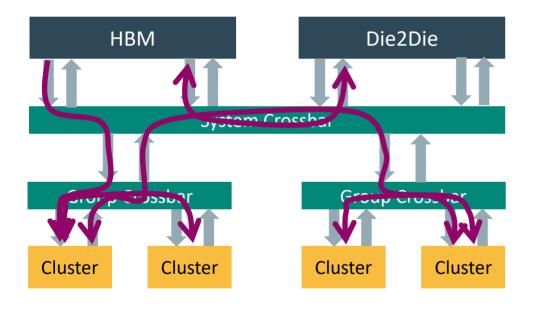
ALMA MATER STUDIORUN

ETH zürich



Attention Efficiency

Scaling UP: Efficient and Flexible Data Movement



Problem: HBM Accesses are critical in terms of

- Access energy
- Congestion
- High latency

Instead reuse data on lower levels of the memory hierarchy

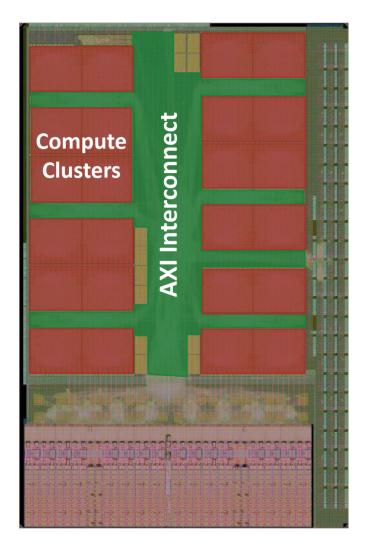
- Between clusters
- Across groups

Smartly distribute workload

- Clusters: Tiling, Depth-First
- Chiplets: E.g. Layer pipelining

Big trend!

Addressing interconnect scalability

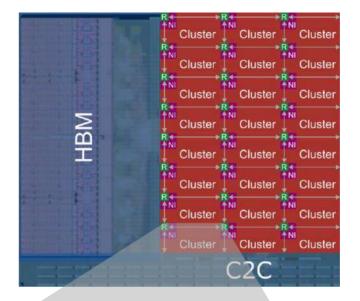


• Fat-tree was very challenging in Implementation

- AXI has severe scalability issues
- Top-level Xbar had to be split up
- Still, interconnect takes up almost 40%*
- Working on NoC solution, *FlooNoC*
 - Fully AXI4 compatible
 - Solves AXI4 scalability issues
 - Designed with awareness of physical design
 - Wide & physical channels

Replacing the AXI interconnect with a NoC

- Potential for big area/performance gains
 - Only ~10% interconnect area
 - 66% more clusters, same floorplan
 - *High Bandwidth*: 629Gbps/link
 - High Energy-Efficiency: 0.19pj/B/hop



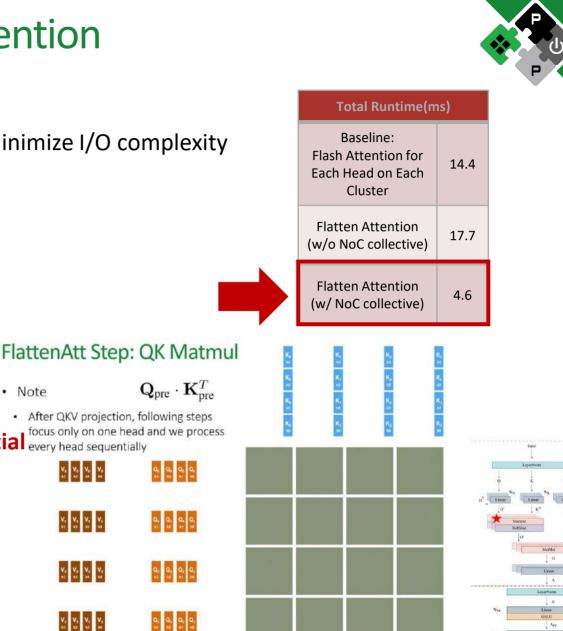
MHA Mapping on NoC: FlattenAttention

- Proposed Dataflow Schedule of MHA
 - We leverage all-cluster L1 for single head attention Minimize I/O complexity
 - Gen.Al specialized NoC
 - Matrix transpose engine for transposition of (K -> K^T)
 - Collective operations on NoC
- Benchmark & Results
 - 16x16 Clusters (8TFLOPS, 256kB L1), 2TB/s HBM
 - One layer MHA of Llama3-70B (seq=4K, batch=8)

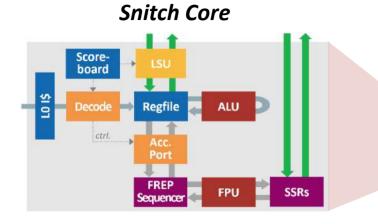
ALMA MATER STUDIORUN Università di Bologn

- Efficient collective operation support on NoC is essential focus only on one head every head sequentially
 - 3x speedup to baseline

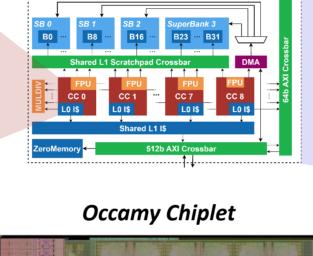
ETH zürich



Scaling UP: From Chip to chiplets



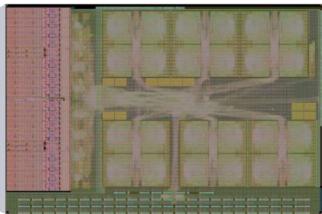
Occamy System



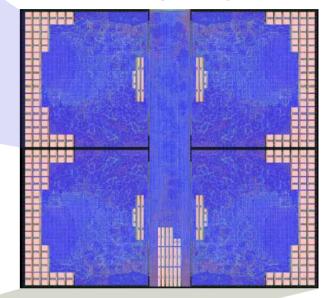
Snitch Cluster

Periph

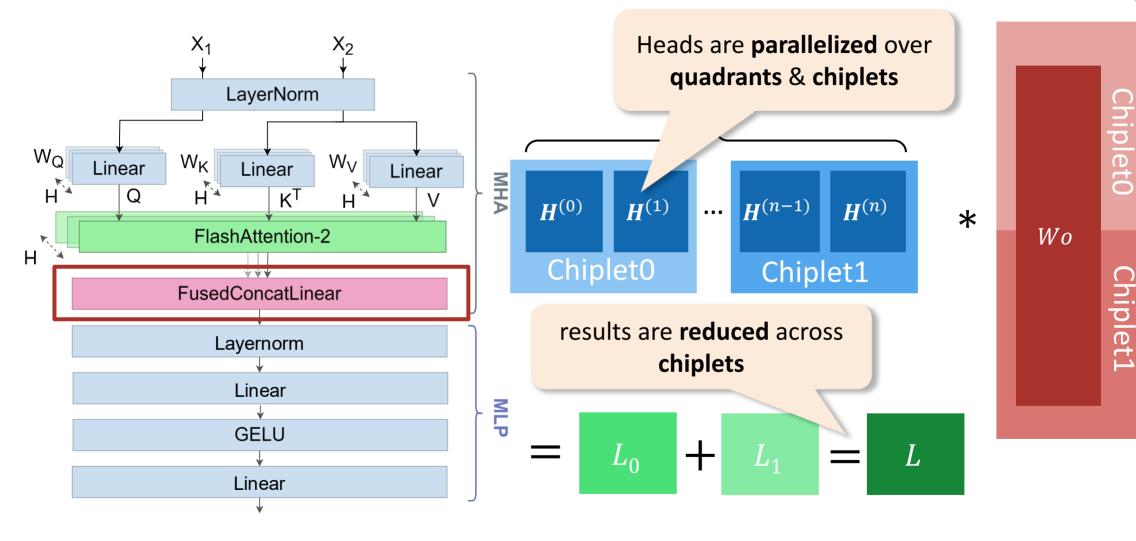
Cluster



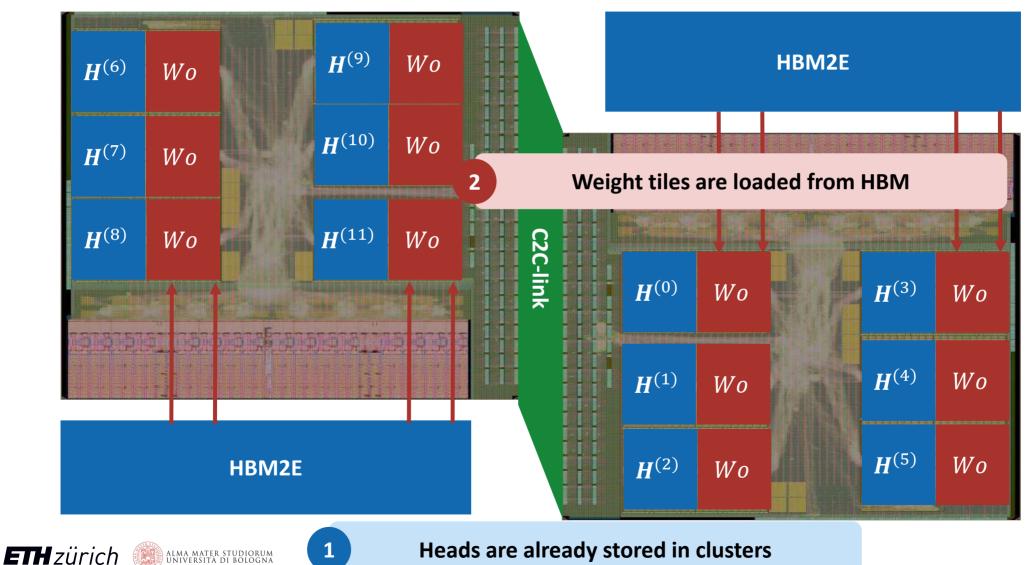
Occamy Group

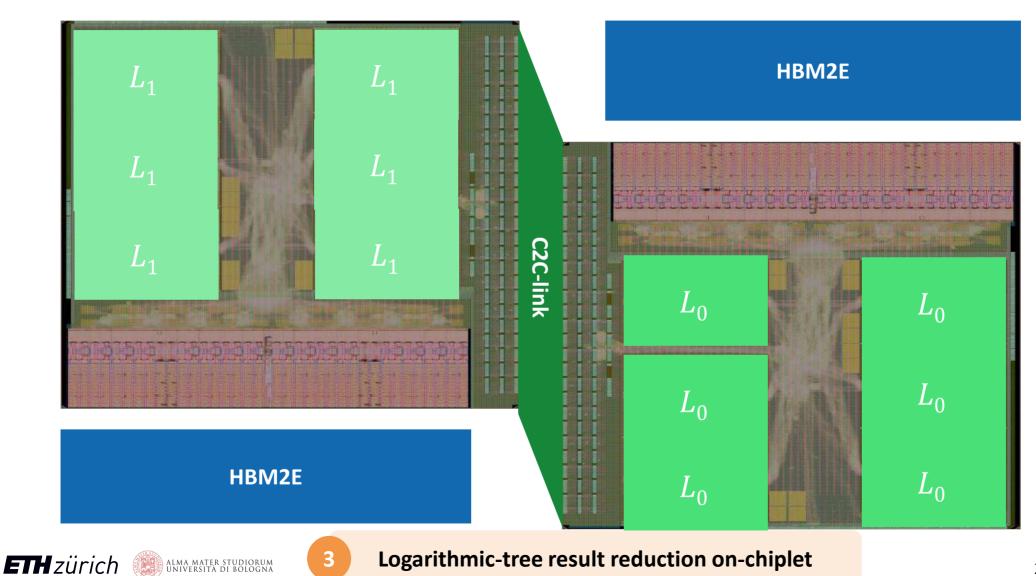


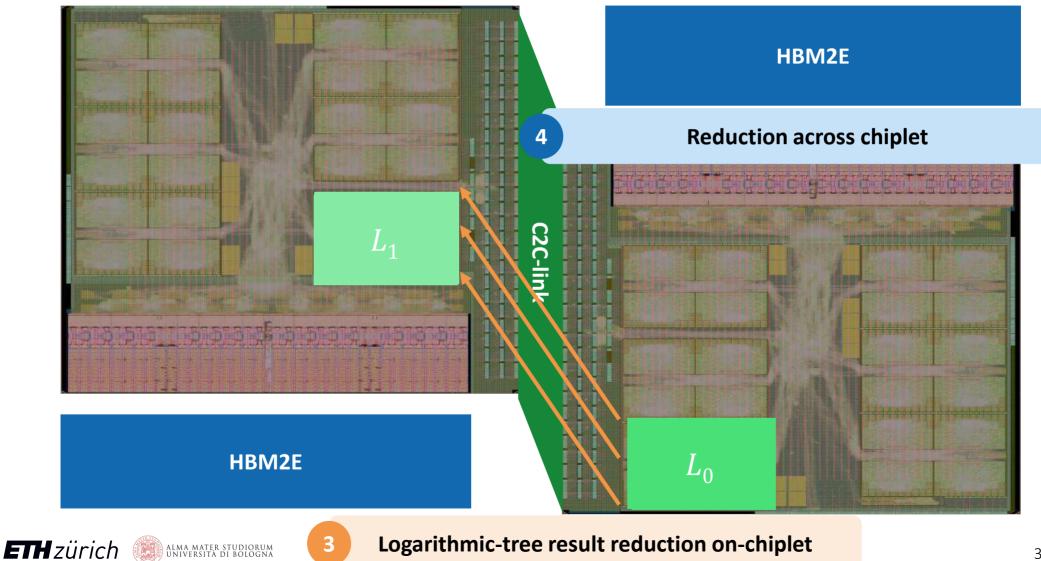
Not Only Layer-by-Layer distribution across Chiplets!

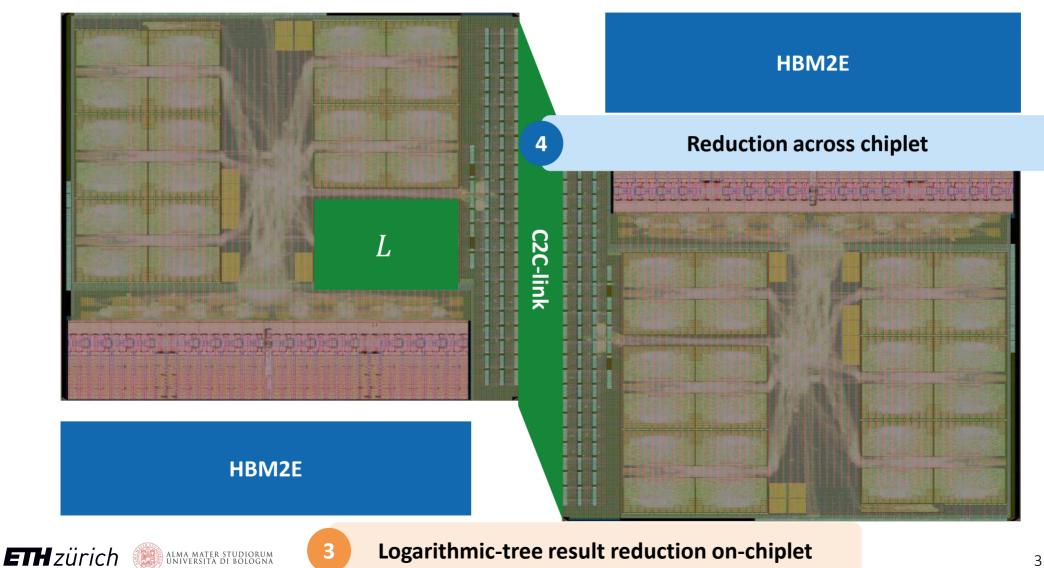


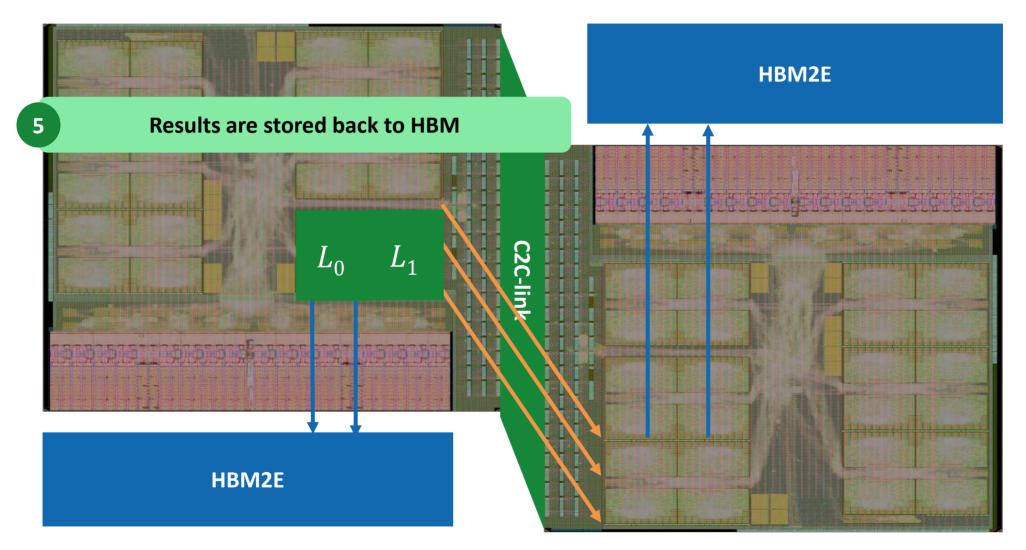
Y

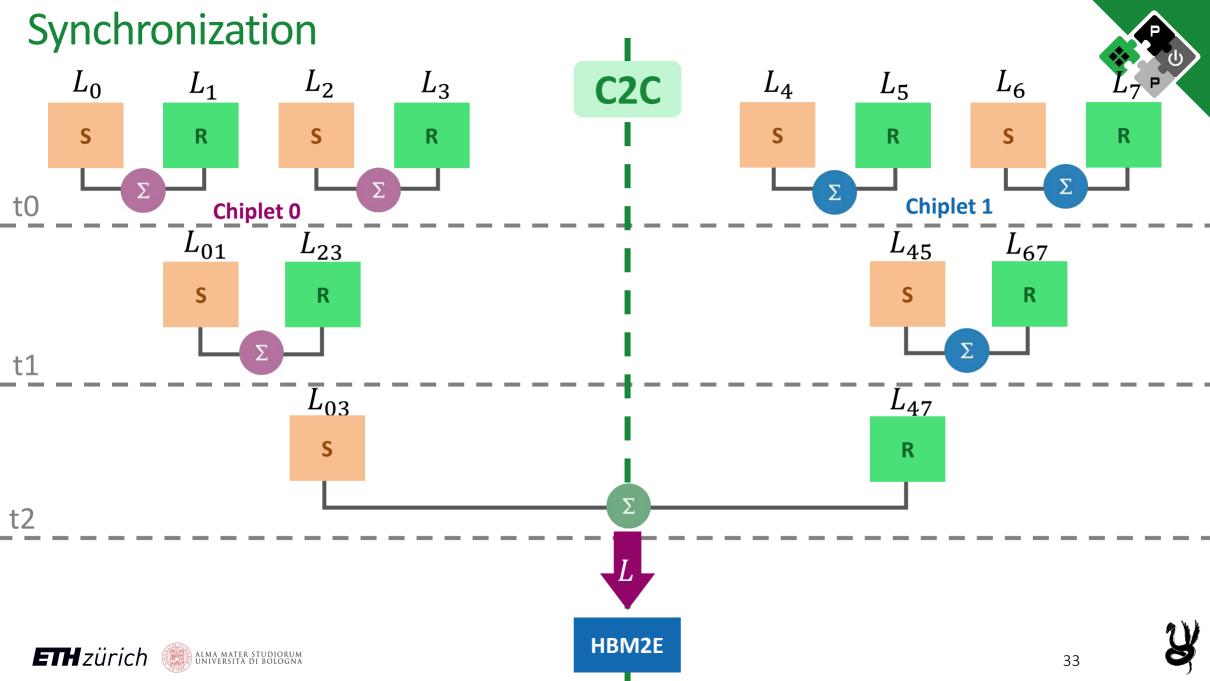




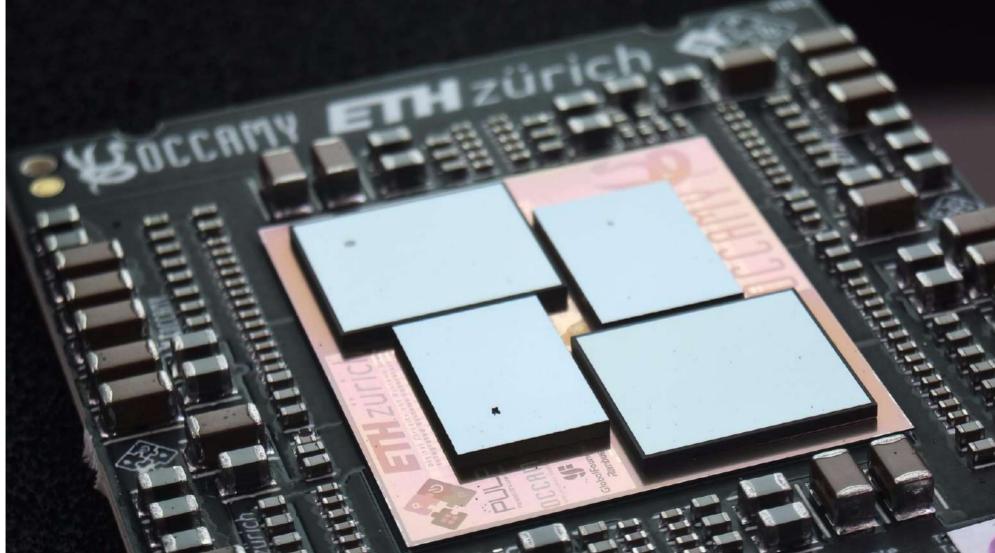


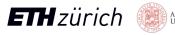






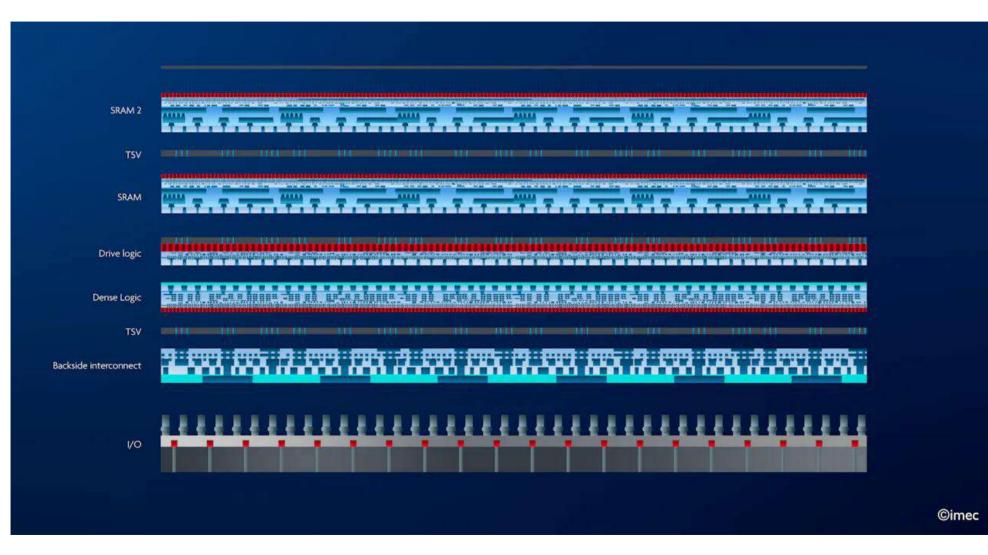
What next?





Y

What next?



Thank You!