

A 10-core SoC with 20 Fine-Grain Power Domains for Energy-Proportional Data-Parallel Processing over a Wide Voltage and Temperature Range

Thomas Benz, Luca Bertaccini, Florian Zaruba, Fabian Schuiki Frank K. Gürkaynak, Luca Benini Integrated Systems Laboratory (IIS) *ETH Zürich, Switzerland* {tbenz, Ibertaccini, zarubaf, fschuiki, kgf, Ibenini}@iis.ee.ethz.ch

Outline

- Introduction
- □ Architecture
 - Overview
 - ISA Extensions
 - Power Gating
- Usecases
 - Datacenter
 - Extreme Edge
- □ Chip Results
- □ Comparison with SoA
- Conclusion

Introduction

□ Energy efficency: dominant factor for next-gen systems

- Scaling does not improve leakage
- □ Leakage is an increasing problem
 - Increased silicon area + heterogenity
 - Higher integration density
 - High amount of dark silicon
- □ Leakage: no contribution to useful work
 - Wasted energy
 - Reduction of useful TDP

□ A concern across the **compute continuum**

- Datacenter
- Extreme edge

Core Area (µm²)

Equi-area chip: power 1.24x up node-to-node!

Challenges & Contributions

Challenges

- Fine-grain power gating in manycore
 (area, timing) is non-trivial
- Usually: go for **coarse-grain** domains
 - limits energy proportionality

Contributions

- Manycore architecture with ISA extensions
 - Tuned for energy efficiency
 - Optimized µ-architecture to minimizes state
- First fine-grain power-manged RISC-V multi-core chip
 - Approach energy proportionality
 - Implemented and validated over a wide freq. temp. range
 - □ Present **sub-10ns** wake-up time of power domains

Architecture Overview

- □ Always on domain
 - Microcontroller
 - > Governor
 - Management responsibilites
 - Peripherals

Cluster

- 8+1 Snitch Cores
 - □ Single-stage RISC-V
- Core-Complex: core + FPU + IPU
- 64kiB local scratchpad memory
- ISA extensions
 - □ SSR
 - □ FREP
- Fine-grain power gating

Snitch – highly power-manageable core

7 of 12

Snitch – highly power-manageable core

- Snitch Core Complex
 - Simple single-stage Snitch core
 - Control core
 - □ **Low** amount of logic
 - IPU, FPU functional units
- □ Goal: Utilize functional units **>80%**
 - Superscalar out-of-order cores
 - □ Large amount of **state & deep pipeline** stages in func. units
 - > Highly adverse to power management!
 - Our solution: simple RISC-V ISA extensions
 - □ **SSR**: streaming semantic registers
 - □ **FREP**: hardware loop
 - □ Only **minimal** architectural state in power gated region
 - □ Algorithm using SSR, FREP: only **temporary** data
 - □ Optimized microarchitecture: only **4** pipeline stages

Power Gating Granularity

IPU7

FPU7

IPU6

FPU6

IPU5

FPU5

IPU4

FPU4

IPU3

FPU3

IPU2

FPU2 IPU1

FPU1

Cache

FLLS

AoD

Peripherals

Governor

IPU8

-PU8

ICDM

SPM /

LLC

- AoD Domain
 - Governor Core
 - Not power gated
 - Focus on cluster $\mathbf{>}$
- Cluster domain п
 - **Coarse-grain**
 - Entire Cluster
- **Functional Units** П
 - **Fine-grain**
 - Individual FPU domains
 - Individual IPU domains

Power Control

- Power control module
 - Memory-mapped register interface
 - Finite state machine
 - Programmable sequence
 - Only 11.4 kGE
- □ Header power gates
 - Mother Daughter
 - Reduce peak inrush current
- Isolation
 - Prevent hardware from injecting wrong transfers

Power Control Sequencing

- 4-stage process
 - Timig configurable
 - Single-write power toggle
- Mother Daugther delay
 - Most critical
 - Mitigate spike in inrush current
- Power toggle speed
 - 3 AoD clock cycles
 - ~6 cluster clock cycles
 - Sub-10 ns

Use Case: Datacenter

- Cluster-centric application
- □ 2 usecases for power gating:
 - IPU / FPU workloads are not mixed
 - Gate unused unit type
 - Memory-bound regimes
 - Gate stalling units
- □ Control is done by data movement core
 - Alreday used for data orchestration
 - Insigth in xPU utilization
 - Decentralized, scalable control

TC 01 TO

Use Case: Datacenter - Results

- □ 0.9V, 75°C, running at 850 MHz
- Running xPU workloads
 - Variable arithmetic intentity
- FPU Workloads
 - Power gate IPU units: 6.5% power reduction
 - Gate stalling units
 - In fully memory-bound region (I): up to 13.1%
- IPU Workloads
 - Power gate FPU units: 8.0% power reduction
 - Gate stalling units
 - In fully memory-bound region (I): up to 14.0%
 - Higher relative gain: IPUs consume less power

Study: Manticore

- Manticore Architecture*
 - **1024** cores on a chiplet
 - Organized in 128 clusters
 - **HBM2** memory interface
 - 4 chiplets: Manticore System
- AXPY FPU workload П
 - Power gate all IPU units
 - 1/12 SP FLOP / Byte
 - 65 cluster fully gated
 - 63 cluster: **1 FPU** active
- **41.4%** power reduction
 - **Coarse-** and **fine-grain** power gating

4096

FMADD Performance [GSPFLOP/s]

1/16

1/32

15.18W to 8.96W

* F. Zaruba, F. Schuiki and L. Benini, "Manticore: A 4096-Core RISC-V Chiplet Architecture for Ultraefficient Floating-Point Computing," in IEEE Micro, vol. 41, no. 2, pp. 36-42, 1 March-April 2021

Use Case: Extreme Edge

- Microcontroller
 - Self-contained unit
 - 1 management core: AoD Governor
 - 8+1 core GP compute accelerator
- □ Usecase for power gating
 - Sporadic need for **massive** compute
 - Gate cluster fully during idle
 - Need to reduce power-on transition time
 - Near-threshold for dynamic efficency
 - Worsens ratio of leakage
 - □ Slower clock: **less cycles** for transition

Use Case: Extreme Edge - Results

- Nominal operating point
 - Edge node
 - 0.6V, 25°C. Near-threshold
 - Up to 42% power reduction
- Extended temperature range
 - Automotive applications e.g.
 - 0.6V, 65°C
 - Up to 65% power reduction
- Near-threshold operation remains 5 energy efficient also for advanced nodes and high operating temperature 0

Chip Results

Technology	GF 22nm FDSOI
Chip Area	1.56 mm ²
VDD Range	0.6V – 0.9V
Memory size	64kiB L1, 24kiB L2
Logic Transistors	6 MGE
Frequency Range	32kHZ – 950MHz
# Controllable Power Domains	18 fine-, 1 coarse-grain

Power Domain	Area
Always on Domain	1.52 MGE
Cluster	2.69 MGE
FPU	57.0 – 58.7 kGE
IPU	31.3 – 32.2 kGE

Comparison With SoA

	SamurAl [2]	Vega [3]	Thestral (This work)	[6]	A64FX [5]
Application	loT	loT	IoT/HPC	HPC	HPC
Technology	28nm FSOI	22nm FDSOI	22nm FDSOI	28nm FDSOI	7nm FinFET
Die Size	4.5 mm ²	12 mm ²	1.56 mm ²	7.84 mm ²	-
Cores/ISA	32b Async RISC 32b / RISC-V	1 + 9 cores / 32b RISC-V	1 + 9 cores / 32b RISC-V	2 cores / 64b RISC-V	48 + 4 cores / Armv8-A
Accelerator	ML /Cypto	4 shared FPUs / HWCE	8 FPUs / 8 IPUs	Hwacha Vector	SVE / 512 bit SIMD
Maximum Frequency	350 MHz	450MHz	910 MHz	475 MHz	2.2 GHz
Voltage Range	0.45V - 0.9V	0.5V - 0.8V	0.6V - 0.9V	0.55V - 1.1V	-
On-chip SRAM (State Retention)	464kB	128kB (L1) / 1600kB s.r. (L2)	64kB (L1) / 24kB s.r. (L2)	256kB	32MB (L2 Cache)
Power Management	Clock & Power Gating	Clock & Power Gating	Clock & Power Gating	DVFS & Body-Biasing	Power Gating & DVFS
Granularity	On-Demand Unit	Cluster / SoC / Memories	Cluster / IPUs / FPUs	Tile (Core)	FPU Lane
Best INT Performance	1.5 GOPS	15.6 GOPS (8-bit)	6.8 GOPs (32-bit)	Not Available	Not Available
Best FP Performance	-	2 GFLOPS (FP32)	13.6 GFLOPS (FP32)	Not Available	3.4 TFLOPS (FP64)
Reaction Time	207ns	not available	10ns	<2us	few ms
Energy Efficiency	230 GOPS/W @ 110 MOPS (int8)	79 GFLOPS/W @ 1 GFLOPS	118 GFLOPS/W @ 7.2 GFLOPS	19.6 GFLOPS/W	16.9 GFLOPS/W (FP64)

Conclusion

- Thestral: **10**-core chip with **20** power domains
 - RISC-V manycore chip
 - Custom, light-weight **ISA extensions**
 - Agile, sub-10 ns, aggressive, fine-grain power management
- □ Wide range of applications
 - **IoT**: microcontroller with GP compute acceleration
 - **Datacenter**: compute cluster with decentralized, fine-grain power control
- Datacenter: up to **41.4%** power reduction in a 1024-core chiplet
- □ IoT: Up to **65%** power reduction near-threshold, **high** environmental temperature
- □ High energy efficiency of **118 GFLOPS/W** @ 7.2 GFLOPS