





#### Siracusa – Towards On-Sensor Computing for Extended Reality Applications

🔿 Meta

**Moritz Scherer<sup>1</sup>,** Manuel Eggimann<sup>1</sup>, Alfio Di Mauro<sup>1</sup>, Arpan Suravi Prasad<sup>1</sup>, Francesco Conti<sup>2</sup>, Davide Rossi<sup>2</sup>, Jorge Gomez<sup>3</sup>, Syed Shakib Sarwar<sup>3</sup>, Zhao Wang<sup>3</sup>, Barbara De Salvo<sup>3</sup> & Luca Benini<sup>1,2</sup>

<sup>1</sup>ETH Zürich, Switzerland <sup>2</sup>Universita di Bologna, Italy <sup>3</sup>Meta Reality Labs Research, USA **scheremo@iis.ee.ethz.ch** 



#### Smart glasses





**Ray-Ban Stories** 

- □ Socially acceptable form factor
  - Like regular glasses
- □ Lightweight
  - < 50 grams</p>

### eXtended Reality Glasses





- Cumbersome
- Uncomfortable for multi-hour wear
- □ Heavyweight
  - ~500 grams
- 2-3 hours Battery
  - ~5 W power envelope



#### Microsoft HoloLens 2

## Bringing XR to smart glasses



- Many tasks to manage...
  - Eye gaze tracking [1]
  - Head tracking [2]
  - Hand tracking [3]
  - **...**
- □ ... hard constraints to meet on computation!
  - Real-time, multi-task operation
  - Tight power budget, 10s of mWs
  - High compute intensity NNs, 100s GOp/s

How do we address energy efficiency?



# Save Energy where it counts!



#### Normalized Energy per Operation / Byte Transfer



[M. Abrash: Creating the Future: Augmented Reality, the next Human-Machine Interface, IEEE IEDM 2021] 5 of 19

#### Towards Ultra-Low Power XR



Siracusa - A PULP SoC to maximize energy efficiency for XR applications

- □ Integration of N-EUREKA accelerator in a PULP system
  - Weight-precision scalable CNN accelerator
- □ Implementation of a dedicated weight memory subsystem
  - Eliminates off-chip memory transfers for real-world workloads
  - Maximizes weight-intensive layer performance & energy efficiency
- Real-time performance in 10s of mW on a real-world hand-detection workload

# The Essential PULP System





- □ Fully fledged, multi-core SoC
  - 8 RISC-V Cluster Cores
  - Custom DSP ISA extensions
- Software-controlled L2 & L1 memory w/ dedicated DMA
  - Enables neural network activation tiling!
- □ Support core & rich set of peripherals



### The Siracusa Cluster







- Dense & Depthwise Convolutions
- Bit-serial Operation, scaling performance

#### **N-EUREKA** Architecture





- Each **core** computes 32 channels of 1 px
- More **cores** -> larger output tile
- Energy-efficient bit-serial dataflow





[Prasad et al.: Specialization meets Flexibility: a Heterogeneous Architecture for High-Efficiency, High-flexibility AR/VR Processing, DAC 2023]

### **N-EUREKA** Architecture



- Computation tiled over output
  - Each core computes 32 channels of 1 px
  - More cores -> larger output tile
- Energy-efficient bit-serial dataflow
  - Support for 2 8b weights, 8b activations
- □ 1x1 convolutions are crucial
  - > 90% of computations in MobileNet v2
  - High bandwidth needed!

How to support 1x1-convolutions efficiently?

Add a dedicated weight port!





### Weight Memory Subsystem





□ Add wide weight access port

256 Bits per cycle

- □ Exploit large weight memory
  - Avoids off-chip weight accesses for NNs
  - Efficiently support bit-serial access
- □ Use L1 port for activations only

#### 12 of 19

# Siracusa Implementation

- □ TSMC 16 nm implementation
  - 4 mm x 4 mm
- □ A plethora of on-chip memory
  - 4 MiB SRAM weight memory
  - 2 MiB L2
  - 256 KiB L1 TCDM
- □ Three independent clock domains
  - SoC, Cluster & Peripherals
- N-EUREKA & 8 RISC-V Cluster Cores





#### **Cluster Performance**



□ Measured peak performance & efficiency on matrix multiplication

- Using L1 TCDM and 8-core parallel cluster
- Characterized for 0.65 0.8V
- Characterized for 2b, 4b and 8b operands
- □ Efficient general purpose & DSP acceleration
  - 1.13 TOp/J @ 120.6 GOp/s 2b matmul
  - 241 GOp/J @ 28.4 GOp/s 8b matmul



### **N-EUREKA** Performance



- □ Measured peak performance & efficiency on convolutional layers
  - 1x1, 3x3 kernel dense convolutions
  - 256 channels, 6x6 feature map
  - Using SRAM weight memory
  - Characterized for 0.65 0.8V
- □ Wide range of efficiency/throughput
  - 1x1:
    - 3.7 TOp/J @ 106 GOp/s 2b weight
    - □ 1.6 TOp/J @ 274 GOp/s 8b weight
  - 3x3 (dense):
    - 9.9 TOp/J @ 533 GOp/s 2b weight
    - □ 2.0 TOp/J @ 382 GOp/s 8b weight



# Hand Detection Results



- □ Hand detection for Region-of-Interest cropping
  - MobileNetv2-based network for detection
- □ Implemented & measured NN on N-EUREKA
  - 8 Bit activations, 8 Bit weights
  - 120 MOp per Inference
  - 1.3 Mparameters
- End-to-end performance
  - 168.5 8b-MAC/Cycle
  - 107.3 µJ/Inference
- □ 33x less external transfer



Camera On-Camera Compute

Aggregator

# The Impact of Weight Memory

- □ Measured N-EUREKA performance
  - With using weight memory
  - Without weight memory -> Weights from L1
- Weight memory increases performance
  - PW: 3.3x throughput, 3.2x energy efficiency
  - Dense: 3.0x throughput, 2.1x energy efficiency
  - Full Network: 2.5x throughput, 1.8x EE
- ... and closes the gap to the compute bound
  - >75% for Dense 1x1 & full network



#### 16 of 19

#### Conclusion



- □ Siracusa optimizes energy efficiency for NNs by
  - eliminating off-chip memory accesses thanks to large on-chip memory
  - minimizing on-chip memory movement thanks to L1 weight memory
  - exploiting mixed-precision, bit-serial accelerator dataflow
  - 9.9 TOp/J @ 533 GOp/s 1.2x more efficient than digital state-of-the-art<sup>[4]</sup>
- □ L1 weight memory maximizes end-to-end performance
  - **2.5x increase in throughput** 
    - 1.8x increase in energy efficiency
- □ Siracusa offers efficient general-purpose acceleration
  - 8 Core Cluster with state-of-the-art throughput & efficiency

# Questions?



Rychan

#### Distributed, on-sensor computing-

- Collect raw data
- Process directly **on-sensor**
- Aggregate on larger computing platforms

#### Acceleration-

- L1 HW acceleration for DNNs
- On-chip L1 weight memory for DNNs
- LO acceleration for diverse processing

asic.ethz.ch

#### pulp-platform.org

#### References



- [1] Y. Feng, N. Goulding-Hotta, A. Khan, H. Reyserhove, and Y. Zhu, "Real-Time Gaze Tracking with Event-Driven Eye Segmentation," in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Mar. 2022, pp. 399–408. doi: 10.1109/VR51125.2022.00059.
- [2] S. Huang *et al.*, "A new head pose tracking method based on stereo visual SLAM," *Journal of Visual Communication and Image Representation*, vol. 82, p. 103402, Jan. 2022, doi: <u>10.1016/j.jvcir.2021.103402</u>.
- □ [3] F. Zhang *et al.*, "MediaPipe Hands: On-device Real-time Hand Tracking." arXiv, Jun. 17, 2020. doi: <u>10.48550/arXiv.2006.10214</u>.
- [4] Conti et al., "A 12.4 TOPS/W @ 136GOPS AI-IoT System-on-Chip with 16 RISC-V, 2-to-8b Precision-Scalable DNN Acceleration and 30\%-Boost Adaptive Body Biasing"