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Embodied AI
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[SCR23]

On-car Computing 
PMAX < 1.5 kW

Efficient



Embodied AI
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[AI Index Report 24]

On-car Computing 
PMAX < 1.5 kW

Efficient

Model complexity
10× every ~2.5 years



Embodied AI
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On-car Computing 
PMAX < 1.5 kW

Efficient

[AMD HotChips24]

Model complexity
10× every ~2.5 years

Moore’s Law
10x every 12 years!



Autonomous Nano-Drones
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27cm

23cm

A. Bachrach, “Skydio autonomy engine: Enabling the next generation of 
autonomous flight,” IEEE Hot Chips 33 Symposium (HCS), 2021

• 3D Mapping & Motion Planning 
• Object recognition & Avoidance
• 0.06m2 & 800g of weight
• Battery Capacity 5410 mAh

Advanced autonomous drone

https://www.skydio.com/skydio-2-plus https://www.bitcraze.io/products/crazyflie-2-1

• Smaller form factor of 0.008m2

• Weight:  27 g (30× lighter)
• Battery capacity: 250 mAh (20× smaller)

Nano-drone

9.2cm
9.2cm

Intelligence in a 30× smaller payload, 20× lower energy budget?



Achieving True Autonomy on Nano-UAVs 
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Multiple, 
 complex, 
  heterogeneous

tasks at high speed and robustness 
fully on board

Obstacle avoidance & Navigation
Environment exploration

Object detection

Multi-GOPS  workload at extreme efficiency  → Pmax 100mW



Efficiency through Heterogeneity: Multi-Specialization
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Multi-sensor
frame-based
event-based

Perception
Fusion 

Reasoning 

Brain-inspired: Multiple areas, different structure different function!



Kraken: 22nm SoC, Multiple Heterogeneous Accelerators
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• RISC-V Cluster 

8 Compute cores +1 DMA core 

• CUTIE 

Dense ternary-neural-network 

accelerator

• SNE 

Energy-proportional spiking-

neural-network accelerator

Technology 22 nm FDSOI

Chip Area 9 mm2

SRAM SoC 1 MiB

SRAM Cluster 128 KiB

VDD range 0.55 V - 0.8 V

Cluster Freq ~370 MHz

SNE Freq ~250 MHz

CUTIE Freq ~140 MHz

SoC Domain
Cluster 
Domain
(PULPO)

SNE CUTIE

FLLs

3000 µm

3
0

0
0

 µ
m

The Kraken: an “Extreme Edge”  Brain



• Completely Unrolled Ternary Neural Inference Engine: K × K window, all input channels, cycle-by-cycle sliding

• One Output Compute Unit (OCU) computes one output activation per cycle!

• Zeros in weights and activations, spatial smoothness of activations reduce switching activity

Output channel compute unit (OCU)
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Ternary Weights
(2bits) 864 Ternary Multipliers

2 Popcount units

Ternary Activations
(2bits)

CUTIE: Perception from Frame Sensors
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[Scherer et al. TCAD22]

Aggressive quantization and full specialization



Kraken`s CUTIE Implementation
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• Data in 1.6 bits (Ternary value) with 

On-the-fly Compression/Decompression

• Configuration in Kraken

• 96 channels (Output compute units)

• 3 × 3 kernels

• 64 × 64 pixels feature maps (158 KiB)

• 9 layers of weights (117 KiB)

• Lots of TMAC/cycle

• 96 OCUs, 96 Input channels, 3 × 3 kernels:

• 96 × 96 × 3 × 3  = 82'944 Ternary-MAC/cycle
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SNE: Perception on Event Sensors
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Leaky Integrate & Fire (LIF) neurons

[Di Mauro et al. DATE22]

Event Sensors – DVS camera
Ultra-low latency
Energy- proportional interface

Spiking Neural Engine (SNE)

SNE works seamlessly with DVS (event-based) sensors



How does a convolution work in SNNs?
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3 × 3 Convolutional kernel

Binary tensor signalling 
which neuron is active 
at each timestep

Accumulated contributions
at each timestep

Perform operations only if a spike is present



Event consumption, and output spikes generation
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A more complex dynamic than conventional DNNs neurons:

• Membrane Potential Accumulation/Activation 1× SynAcc = 1× 4b-ADD + 1× 8b-COMPARE

• Membrane Potential decay 1× SynDec = (1× 8b-MUL) + (1× 8b-MUL + 1× 8b-ADD)

t

x

y

convolutional
3 × 3 kernels

3 × 3 × T Event-Frame patch
List of Coordinate (COO)

t

1 × 1 × T tensor 
per output neuron

Leaky Integrate & Fire (LIF) neuron
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Single SNE Engine Architecture
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4bits
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0
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Broadcast events to all PEs

Each PE filters only the 
events in its spatial region 

of interest

Tiled execution on an input patch

Achieves true energy-proportionality: 1 neuron update per cycle



General Purpose: Domain-Specialized RV32 Core (PE) 

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

8-bit Convolution Vanilla Specialized for AI →Mixed precision SIMD (16-2bit)

N

15x less instructions than Vanilla
90%+ ALU Utilization

Init NN-RF (outside of the loop)
lp.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
end

N/4
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Instruction set: open and extensible by construction (great!)

RISC-V
core

Specialization Cost: Power, Area: 1.5×↑ Time 15×↓ → E = PT 10× ↓ 

RISC-V
core



PULP Paradigm: A PE cluster accelerates a host system
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Advancing the SOA on all tasks
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RISC-V Cluster 

• Comparable 32bits-8bits SOA Energy 
efficiency to other PULPs

• The highest energy efficiency on sub-
byte SIMD operations (4b-2b)

SNE

• 1.7× higher than SOA energy/efficiency 

CUTIE

• 2× higher energy efficiency 
improvement over SOA  

L. Deng et al., “Tianjic,” JSSC 2020
B. Moons et al., “Binareye,” CICC, 201 
D.  ossi et al., “Vega,” JSSC 2022. 

CUTIE, SNE work concurrently → SNN+TNN  “fused” inference



Kraken Shield and System Architecture
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• 7g payload

• DVS and frame-based cameras → real-time multi-modal perception.

• Designed for integration into nano-UAV platforms



Spiking Neural Networks for Depth Estimation
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SNN → SCNNs for depth estimation.

Depth Estimation

1.02k inferences/s

Energy Efficiency

18 µJ per inference

Low Power

98mW @ (220MHz, 0.8V)
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Ternary Neural Networks for Object Classification
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CUTIE → TNN for object classification. 

Object Classification

10k inferences/s

Energy Efficiency

6 µJ per inference

Low Power

110mW @ (330MHz, 0.8V)



Kraken Power Consumption (all Included)
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Model Inference/s µJ/inf
Power 
(mW)

SNE 1.02k 18 98

CUTIE 10k 6 110

PULP 221 750 165

Combined power consumption of SNE, CUTIE, PULP cluster 

Kraken power waveform executing Tiny-PULP-Dronet at FC@280 MHz, CL@300 MHz, Vdd@0.8 V

P=373mW, representing just 5% of the UAV’s power budget



How to deploy applications to PULP/Kraken?
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Specification and dataset selection

Training

Quantization/Pruning

Deeploy

PULP-NN
PULP Neural Network 
backend

QuantLab
Quantization Laboratory

SNE 
Toolbox

CUTIE/SNE 
Hardware Abstraction
Layer

Graph optimization

Memory-aware 
deployment

Optimized 
DNN library

Accelerator 
mapping

CUTIE 
primitives

Accelerator 
mapping

SNE 
primitives

Tiling

RISC-V Cluster CUTIE SNERISC-V FC Kraken

QA SNN 
Training



Heterogeneous, Multiscale Accelerated Computing 
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EXT

ACC
#1

ACC
#2

EXT EXT EXT

Cluster 1 

mem
bank

mem
bank

mem
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mem
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mem
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mem
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Tightly coupled data memory interconnectDMA

RV
core

RV
core

RV
core

RV
core

Instruction Cache

High-speed on-chip interconnect (NoC, AXI, other..)

Computing cluster with tightly coupled accelerators

Extensions to processor cores

• Explore new extensions

• Efficient implementations

Shared-memory Accelerators

• Domain specific

• Local memory

L2
Accelerator

#1

L2
Accelerator

#2

L2
Accelerator

#M

Decoupled 
accelerators

Multiple Decoupled Accelerators

• Communication 

• Synchronization

EX
T

External
Memory

Controller

L2 memory

Peripherals

Host
core

Host, L2, L3 IOs

Multiple Scales of acceleration 

RISC-V is a key enabler → max agility, enabling SW build-up, without vendor lock-in



Tightly-coupled Accelerators 
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HWPE: Reconfigurable Binary Engine
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𝐲 𝑘𝑜𝑢𝑡 = 𝒒𝒖𝒂𝒏𝒕 

𝑖=0..𝑴



𝑗=0..𝑵



𝑘𝑖𝑛

2𝑖2𝑗 𝐖𝐛𝐢𝐧 𝑘𝑜𝑢𝑡 , 𝑘𝑖𝑛 ⊗𝐱𝐛𝐢𝐧 𝑘𝑖𝑛

RBE Block

Peak throughput 
10368=9×9×4×32

Scale & Add

3
2

x

BinConv

reduction
tree

3
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x

BinConv

reduction
tree

3
2

x

BinConv

reduction
tree

3
2

x

BinConv

reduction
tree

Energy efficiency 10-20× (0.1pJ/OP) w.r.t. SW on cluster @same accuracy 



Siracusa: Higher performance cluster with N-Eureka

26

CLUSTERHOST

in
te

rc
o

n
n

ec
tL2

Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RV 0
core

MemDMA Mem MemMem

RV 1
core

RV 7
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$

At-MRAM NE
(N-EUREKA)

...

N-EUREKA large NE 
configuration
(~8x RBE v2)

MRAMTight coupling with MRAM 
provides ultra-efficient 
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Siracusa: Memory Hierarchy and Dataflows
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• Tight coupling between all 
units at high bandwidth 
and low latency

• Seamless cooperation 
between hardware-
accelerated and software-
defined functions

Flexible RISC-V
Compute Cluster

Cooperative At-MRAM
Neural Processing Unit

High-Bandwidth
Shared L1 Memory

MRAM
256b

288b

256b



Siracusa: Memory Hierarchy and Dataflows
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A “classic” PULP cluster with 
8 RV32IMCFXpulpnn cores

• private multi-precision FPUs

• hierarchical instruction cache
(4 KiB + 512B per core)

• Xpulpnn extensions for integer
mixed-precision DSP + DNNs

• 256 KiB of Tightly-Coupled Data
Memory (TCDM) divided in 16
word-interleaved SRAM banks

• L1 Logarithmic Xbar for single-cycle, 
high concurrency access
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Boost memory energy efficiency

A large power-optimized on-chip 
memory for network weights →
cluster-level weight stationarity

4x 1MiB SRAM banks (64b-wide)

4x 1MiB MRAM banks (64b-wide)

Paging support  for transparent 
network reconfiguration with 
negligible increase in overall circuit 
area. 
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Siracusa: Memory Hierarchy and Dataflows
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1 Core = receptive field of 1×1 pixel in/output 
across 32 out-channels
Output stationary, Input quasi-stationary
Parametric number of Cores (N×M out-pixel)
8b activations, 2-8b weights
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Siracusa: Memory Hierarchy and Dataflows
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Siracusa: 16nm SoC, Tightly Coupled at MRAM Accelerator
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[A. Prasad et al., “Siracusa: a 16nm Heterogeneous RISC-V SoC for Extended Reality with At-MRAM Neural Engine,” IEEE Journal of Solid-State Circuits]

Siracusa[5][4]Marsellus [3]Diana [2]Vega [1]

16nm FinFET22nm40nm22nm FDX22nm FDX22nm FDXTechnology

16mm28.76mm225mm28.7mm210.24mm210mm2Area

6400 KB SRAM
4 MB MRAM (L1)

1428 KB768 KB1152 KB SRAM896 KB SRAM1728 KB SRAM
4 MB MRAM (L3)

On-chip mem

698 GOPS146 GOPSN/A90 GOPS140 GOPS32.2 GOPSPeak Perf 8b

2.68 TOPS/W0.7 TOPS/W0.94 TOPS/W1.8 TOPS/W2.07 TOPS/W1.3 TOPS/WPeak Eff 8b

8.84 TOPS/W 
(2x8b)

0.7 TOPS/W60.6 TOPS/W 
(1x1b)

12.4 TOPS/W 
(2x2b)

4.1TOPS/W 
(2x2b)
600 TOPS/W 
(analog)

1.3 TOPS/WPeak Eff (WxAb)

65.2 GOPS/mm258.3 GOPS/mm2N/A47.4 GOPS/mm221.2 GOPS/mm23.2 GOPS/mm2Area Eff

[1] D. Rossi et al., JSSC’21
[2] P. Houshmand et al., JSSC’23
[3] F. Conti et al., JSSC’23
[4] M. Chang et al., ISSCC’22
[5] Q. Zhang et al., VLSI Symposium’22

Balance efficiency, peak performance, area efficiency
without compromises in precision

N-EUREKA 36-cores configuration



Specialization in perspective

ISA-based 10-20x →1-5pJ (8bit)

Configurable DP 10-20x → 20-100fJ (4bit)

Highly specialized DP 10-20x →1-5fJ (ternary)

Energy-Efficient RV Core → 20pJ (8bit)

XPULP

RBE, NEUREKA

CUTIE, SNN

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead 
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From Drones to Cars: Stepping up

• Microcontroller class of devices

• Infineon AURIX Family MCUs

• Control tasks, low-power sensor acquisition & data processing 
Features: lockstepped 32-b HP TriCore CPU , HW I/O monitor, 
dedicated accelerators

• Powerful real-time architectures

• ST Stellar G Series (based on ARM Cortex-R cores)

• Domain controllers and zone-oriented ECUs

• Features: HW-based virtualization, Multi-core Cortex-R52 
(+NEON) cluster in split-lock, vast I/Os connectivity

• Application class processors

• NXP i.MX 8 Family

• ADAS, Infotainment

• Features: Cortex-A53, Cortex-A72,HW Virtualization, GPUs

33

Safe

Real-time

Secure



Carfield: 16nm SoC - Safety, Security, RT-Predictability

34

Main Computing and I/O System Accelerators Domain



How Do We Handle Safety-Critical and Real-Time Tasks?
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▪ Protection against transient faults (safety)
▪ Predictable On-Chip Communication (RT)
▪ Reduced contentions to access critical shared memory resources (RT)



Safety Island
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• Safety-critical applications running on a RTOS

• Three CV32E40 cores physically isolated 
operating  in lockstep (single HART) and fast 
HW/SW recovery from faults

• ECC protected scratchpad memories for 
instructions and data

• Fast and Flexible Interrupts Handling 
through RISC-V compliant CLIC controller

• AXI-4 port for in/out communication

SAFETY 
ISLAND TRIPLE-CORE LOCKSTEP

CORE 0 CORE 2CORE 1

PRIVATE
MEMORY 

(INSTR)

PRIVATE
MEMORY 

(DATA)

TCDM INTERCONNECT

CLICINTERRUPTS

AXI

AXI

DW Converter

AW Converter

AXI to MEM

MEM to AXI

AW Converter

DW Converter

TCDM INTERCONNECT

BOOT
ROM

SoC
CTRL

DEBUG

CORE LOCAL



Predictable On-Chip Communication (AXI RT)
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• AXI4 inherently unpredictable

• Minimally Intrusive Solution

• No huge buffering, limited additional logic

• Verified in systematic worst-case real-time analysis

• AXI Burst Splitter

• Equalizes length of transactions to avoid unfair BW distribution 
in round-robin scheme

• AXI Cut & Forward

• Configurable chunking unit to avoid long transaction delays 
influencing access time to the XBAR

• AXI Bandwidth Reservation Unit

• Predictably enforces a given max nr of transactions per time 
period (to each master)

• Per-address-range credit-based mechanism 

• Periodically refreshed (or by user)

RT
Unit

Unmodified AXI4
XBAR (round-robin arbitration on 

single transactions)

Burst 
Splitter

Cut & 
Forward

BW 
Reservation 

Unit

Host

RT
Unit

RT
Unit

Core DMA RT Core

XBAR

SRAM DRAM

[Restuccia et al. DAC 2020]
[Pagani et al. ECRTS 2019]  



Carfield SoC Flooplan – Tested in August 2024
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• Host

• Dual-Core 64-bit RISC-V processor; 2.45 mm2; 600 MHz; 

• Security Island

• Low-power secure monitor; 1.94 mm2 ; 100 MHz; 

• Safety Island

• 0.42 mm2; 500 MHz

• Re-configurable L2 Memory Subsystem

• 1MB; 2.33 mm2; 500 MHz 

• HMR Integer Cluster

• 1.17 mm2; 500 MHz;

• RVV FP Cluster

• 1.14 mm2; 600 MHz;

• Hyperbus

• 2 PHY, 2 Chips; 200 MHz; Max BW 400 MB/s
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Generative AI: The era  of Foundation Models

• Versatility and Multi-modality

• Natural language processing, computer vision, 
robotics, biology, …

• Self-supervision, Fine-tuning

• Self-supervised training on large-scale unlabeled 
dataset 

• Fine-tune (few layers) on specific tasks with 
smaller labeled datasets.

• Zero-shot specialization

• Prompt engineering for new tasks

• Transformer Baseline

• Many variations

• Ultra-fast evolution
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Bommasani, Rishi, et al. "On the Opportunities and Risks of Foundation Models." Center for Research on 
Foundation Models (CRFM), Stanford Institute for Human-Centered Artificial Intelligence (HAI).



Challenges in Attention

• Attention matrix is a square matrix of order input length

•  Computational complexity

•  Memory requirements

• MatMul & Softmax dominate
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MatMul

MatMul

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

Softmax 𝐱 i =
exi−max(𝐱)

σj
n exj−max(𝐱)



Matmul Benefits from Large Shared-L1 clusters
• Why? 

• Better global latency tolerance if L1size > 2× L2latency × L2bandwidth  (Little’s law + double buffer) 

• Smaller data partitioning overhead

• Larger Compute/Boundary bandwidth ratio:  N3/N2 for MMUL grows linearly with N!

• A large “MemPool”: 256+ cores and 1+ MiB of shared L1 data memory
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MemPool: A physical-aware design
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Group

MemPool
&

Terapool

MemPool ClusterMemPool Group

• A Scalable Manycore Architecture with Low-Latency Shared L1 Memory

• 256+ cores

• 1+ MiB of shared L1 data memory

• ≤   cycle latency (Snitch can handle it)

• Hierarchical design

• Implemented in GF22

• Targeting 500 MHz (SS/0.72V/125°C)

• Reaching 600 MHz (TT/0.80V/25°C)

• Targeting iso-frequency with PULP

• Cluster area of 13 mm2

• 5 mm diagonal

• Round trip in 5 cycles



MemPool + Integer Transformer Accelerator (ITA)

Executing Transformer Networks

• Attention operation dominated by MatMul

• Flexible programmable accelerated architecture

• 192 Snitch cores split into 48 tiles

• 4 ITA cores to accelerate 8-bit attention operation

• Automatic mapping of attention operation to ITA in Deeploy

Collaborative Execution

• Support convolutions and “exotic” operators on cores

• MatMul and Softmax accelerated with ITA

• Cores prepare activations for the next attention head

• Final head accumulation computed in cores
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MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

• 8-bit inputs, weights & outputs

• Builtin data marshaling & pipelined operation

• Streaming partial Softmax adding no additional latency

• Fused Q× KT, Softmax and A × V computation

• Support for hardware-aware Softmax 
approximation in QuantLib
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Dot Product
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Offloading Attention Operation to ITA
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Performance 
increase of 15x

Energy Efficiency 
increase of 36x

Area Efficiency 
increase of 74x

15x

8x

36x

20x

74x
40x



Heartstream: 12nm SoC – MemPool on Silicon
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64 cores, 256kiB L1, peak 1.6MOPs @8b (TT-25°C-0.8V)

Boosting dot product, matmul + Softmax @8bit → ITA

(4-Tiles) (4-Tiles)

(4-Tiles) (4-Tiles)ITA



Closing Thoughts



Embodied Gen-AI

49

[Karpathy23]

“A more complete 
picture is emerging of 
LLMs not as a chatbot, 
but the kernel process 
of a new Operating 
System”

Interactive, 
embodied 
intelligence: low-
latency, edge 
inference

Prompted by @ashraf osman, AWS

Gen-AI products @CES24



Perception → Gen.AI → Embodied Gen.AI

Precise Interactive, creative Efficient, RT-safe, secure

50



Embodied Gen.AI Challenge

51

Eval
Loss 
(log)

Performance of GPT-4 and smaller models: y-axis mean log pass rate on a subset of the HumanEval dataset. Dotted line: A power 
law fit to smaller models (excluding GPT-4) → Accurately predicts GPT- ’s performance. x-axis is training compute (log)

 penAI’23 arXiv:2303.08774

Challenge accepted; we are already on the right path, working on next gen circuits 



• Research on open-source energy-efficient computing 
architectures

• Started in 2013, we are celebrating 10 years of our project this year

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people
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Thank You!
pulp-platform.org              

@pulp_platform



Customize template to your presentation

• You can change the logo under  View → Master 

• Use the logo of your project

• Leave it empty (or with Bianca) if you do not have an 
additional logo

• Please adapt the footer

• Use  Insert → Header & Footer to insert
date and conference/presentation name

• Page number will show up on the right

• You can slightly shift left/right the footers
(in Master view) to adjust to logo size/shape

Add date or a third information here 53



Default slide layouts

• This is a PowerPoint template

• Other tools do not support all its features

• Use the standard layouts as much as possible

• There are several default page styles

• If you copy from other presentations, in most cases it will 
add new styles. If possible, change it to the existing 
styles, which makes life easy when sharing again later on.

• To change template for a slide

• Right click on your slide → Layout → Select preferred 
layout

Add date or a third information here 54



Default fonts

• Default (body) font is Calibri, size 24pt

• Do not go smaller than 18pt in the body

• You can use Calibri Light if you need some 
lighter writings

• Default bullet point lists

• First hierarchy level is bold by default

• This helps making the slide more readable 
when there is a lot of text

• If you don’t have sub-points, it is nicer to
un-bold

Add date or a third information here 55



14
.5

 c
m

The slide is 16:9 format and is 32cm x 18cm

• You can use shape properties (right click → Size and Position…)
to enter sizes of boxes and images

• Default sizes are nice and even, to make alignment easy

Add date or a third information here 56

28 cm

32 cm



Try to limit to palette colors

• If we make slight modifications to colors (i.e., to 
help color blind people) your slides will 
automatically get adjusted

• This is generally good, also helps with consistency

• Problem is when the template colors differ significantly 
between different presentations, then using absolute colors 
creates less confusion

• I suggest sticking to the template colors 

• In general, always pay attention to contrast

• Always keep in mind your slides will show on a projector 
(much lower contrast than a monitor)

Add date or a third information here 57



Our standard colors for architectural diagrams

• All are template colors

• No outlines necessary

• Standard boxes should allow you to add text

• Default is not to autofit

Add date or a third information here 58
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Our standard colors for architectural diagrams

Add date or a third information here 59
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Useful examples

• In the following slides you can find useful examples of

• Slides to show your code snippets

• Highlight boxes and other useful objects compliant with the template style

• They are for free :D Take as many as you want

• Directly copy-paste in your presentation

Add date or a third information here 60



Example slide for code

• Suggestion: keep the title short so 
that it fits in the white half of the slide

• Use the

• lighter

• shades

• of the color palette

• to highlight keywords in the code

• You can also play with the 
margins to make it look
nicer, based on your snippet

module snitch (
  input logic clk_i,
  input logic rst_i,
  input logic [31:0] h_i,
  /// Interrupts
  input itrpts_t irq_i,
  /// Other I/O...
);
  // Module content
endmodule



Example slide for code

• If you like it more, you can also use 
this green layout (in case you don’t 
plan to use a lot of code highlighting)

module snitch (
  input logic clk_i,
  input logic rst_i,
  input logic [31:0] h_i,
  /// Interrupts
  input itrpts_t irq_i,
  /// Other I/O...
);
  // Module content
endmodule

suggestion begin
  code highlighting not \
  really nice here
  /// Too little contrast
end



• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed

• do eiusmod tempor incididunt ut 
labore et dolore magna aliqua.

• Ut enim ad minim veniam, quis 
nostrud exercitation ullamco
• laboris nisi ut aliquip ex
• Duis aute irure dolor in

• cillum dolore eu fugiat nulla
Source: https://pulp-platform.org

Highlight box to highlight e.g. your 
contributions

This slide provides 10x 

performance improvement in 
presentations development

Callouts

Another example

Example of callout 
usage: can experiment 
with/without shadow

https://pulp-platform.org/


Duranton, Marc, et al. "HiPEAC Vision 
2021: high performance embedded 
architecture and compilation." (2021).

Benini, Luca, et al. "A survey of design techniques for system-level 
dynamic power management." IEEE transactions on very large scale 
integration (VLSI) systems 8, no. 3 (2000): 299-316.

Source: https://iis-nextcloud.ee.ethz.ch/example-
figure-source-caption

References

Benini, Luca, et al. "A survey of design techniques for system-level dynamic power management." 
IEEE transactions on very large scale integration (VLSI) systems 8, no. 3 (2000): 299-316.

"A survey of design techniques for system-level dynamic power management." TVLSI2000.08

[Burrello et al. TCOMP21]

Example of highlight box 
and reference box usage

Image source 
captionNon-invasive 

references

Larger 
references

https://iis-nextcloud.ee.ethz.ch/example-figure-source-caption
https://iis-nextcloud.ee.ethz.ch/example-figure-source-caption


github.com/pulp-platform/snitch

github.com/pulp-platform/snitch

github.com/pulp-platform/snitch Play around with size, 
palette colors and position 

to adapt to your slide

Links

iis-nextcloud.ee.ethz.ch/f/1403905
iis-digital > presentations > templates > pulp_2022.potx

github.com/pulp-platform/snitch

https://docs.google.com/document/d/1EGpF9aboL5q40O287sNyed0ZmOmiQY61MY-BhL-bphs 
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• Occamy, Mempool
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The PULP Story



Q&A

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Institut für Integrierte Systeme – ETH Zürich
Gloriastrasse 35
Zürich, Switzerland

DEI – Università di Bologna
Viale del Risorgimento 2
Bologna, Italy

Sergio Mazzola smazzola@iis.ee.ethz.ch
Frank K. Gürkaynak kgf@iis.ee.ethz.ch



 IP (don’t use this ones)

10x Speedup w.r.t. 
RV32IMC

(ISA does matter☺)

~15x latency and energy 
reduction for a barrier

Better to have N× PEs running at 

optimum Energy than 1 PE  running 

fast at low Energy efficiency
14.5x less instructions

at an extra 3% area cost 
(~600GEs)

TinyML challenge

AI capabilities in the power envelope of an MCU: 10-mW peak (1mW avg)



• v1.0 (06.2022, smazzola)
• First version of the new template

• v1.1 (07.2022, smazzola)
• Fix position of logo, footer, page number

• Change palette green (position #7) from #24AF4B to #168638

• Add slide layouts for code snippets

• Add pre-made objects (callouts, references, links) ready to copy-paste

• Various improvements to template instructions

• v1.2 (03.2023, smazzola)
• Change default body font to Calibri (in place of Calibri Light)

• Make level 0 of bullet point lists bold

• Extend footer’s length

• Substitute Samuel L. Jackson default logo with Bianca

• Enhance closing slide with author names and contact points

• Unify all slide types (standard, code, blank) under one single Master Slide

• Re-organize slide for default elements to copy-paste, add new callouts and links

• Various improvements to template instructions

• v1.3 (03.2024, kgf)
• Adapted the PULP diagram

• Tried to adapt some of the defaults 

• v1.4 (03.2024, fconti)
• Updated UNIBO logo

• v1.5 (05.2024, fconti, kgf, lbenini)
• Updated IP picture

CHANGELOG
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