
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Integrated Systems Laboratory (ETH Zürich)

Deeploy: Enabling Energy-Efficient Deployment of Small
Language Models On Heterogeneous Microcontrollers

Moritz Scherer scheremo@iis.ee.ethz.ch

Luka Macan, Victor Jung, Philip Wiese, Luca Bompani,
Alessio Burrello, Francesco Conti, Luca Benini

Today’s TinyML Application Landscape

30.09.2024 2

MCU Object Detection

Raw Sensor Data
TinyML

On-Device Processing Extracted Information

O
ff-

C
hi

p
C

om
m

un
ic

at
io

n

O
ff-

C
hi

p
C

om
m

un
ic

at
io

n

Towards Multi-modal TinyML

• Today’s TinyML is mainly a compression tool

• Extract and transmit compressed information

• Sensor control and actuation logic is hand-crafted

• Efficient and effective sensor control is hard

• Dynamic noise conditions

• Multi-modal dependencies – your audio input might affect your camera control

• Need to close the on-device control loop

• Using multi-modal, context-aware models

30.09.2024 3

MCU
Object Detection

Raw Sensor Data
TinyML

On-Device Processing Extracted Information

The TinyML Compiler Gap

• Multi-modal models trend towards foundation models (FMs)

• Large transformer models (Billions of parameters)

• Transformer models are good at multi-modal input processing

• Small Language Models (SLMs) show promise as application-specific FMs

• TinyML uses heterogeneous MCUs

• Software-managed caches, few MBs of memory

• Application-specific accelerators

• No turnkey solution for “truly TinyML” heterogeneous MCUs

• Options for application-scale devices (PCs, Servers, …)

• MCU-scale toolchains come with vendor-lock or deployment limitations

30.09.2024 4

Motivation & Contribution

• How do we close the TinyML Compiler Gap for small FMs?

• We introduce Deeploy, a bottom-up DNN compiler for heterogeneous MCUs

• Novel tiling & allocation algorithm implements spill-free network execution

• Vendor-agnostic backend, with extensible expert-optimized low-level kernels

• Deeploy achieves SoA results on the MLPerf Tiny benchmark

• Deployed an SLM on Siracusa, a heterogeneous TinyML MCU

• Achieving 340 Tokens/sec @ 490 uJ/Token

• Using on-chip memory only

30.09.2024 5

An End-to-end Edge AI Stack

30.09.2024 6

Training &

Quantization

Model

Export
Deeploy Inference

Deeploy’s Frontend – Engine-aware lowering

• Graph lowering is platform-dependent

• Taking into account engine mapping options

• Graph remains fully ONNX compliant

• Nodes are matched with low-level kernels

• Kernel libraries like CMSIS-NN, PULP-NN are supported

• Custom kernels may be added as well

• Execution schedule is based on heuristics

• Optionally defined by the user

• How do we manage on-chip memory?

30.09.2024 7

Deeploy’s Midend – Tiling & Memory Allocation

30.09.2024 8

S ta t ic M e m o r y A llo c a t io n
Lifetime

M
em

or
y

Target Constraints:

Constrain partial inputs to work
with HW target

Express tiling constraints in a single Integer Linear Program (ILP)

Core Idea: Control on-chip memory use

Operator Constraints:

Constrain partial inputs
to produce valid partial outputs

Symbolic Buffer Sizes

Core Idea: Schedule allocation offline to fit into on-chip memory

Symbolic Memory Load

Solve resulting ILP for joint tiling & allocation solution!

< Available On-Chip Memory

Symbolically calculate the maximum memory load

Deeploy’s Midend – Optimizing Memory Allocation

30.09.2024 9

Static allocation guarantees spill-free network execution

Memory cap

Deeploy Backend – Vendor agnostic code generation

• Backend generates low-level C Code

• Tiling & memory allocation from midend

• Using operator mapping from frontend

• Deeploy provides code generation primitives

• Device offloading

• Double-buffered DMA transfers

• Fork-synch based multi-core programming

• Bottom-up code generation accelerates reuse

• Bring your own expert-optimized kernel templates!

30.09.2024 10

Putting Deeploy into Practice - Siracusa

30.09.2024 11

• Target Platform: Siracusa

• 8-core PULP Cluster

• 2 MiB L2 Memory

• 256 KiB L1 Memory

• N-EUREKA CNN Accelerator

• 3x3 Convolutions

• 1x1 Convolutions

• Shared L1 access

• Neural Memory Subsystem

• Weight memory for N-EUREKA

MLPerf Tiny Benchmark

SoA Performance with cluster only

Bottom-up design allows us to leverage N-EUREKA seemlessly!

Towards Small Foundation Models for TinyML

30.09.2024 12

• Reuse N-EUREKA’s 1x1 convolution to map linear layers

• Linear weights are kept untiled in weight memory

• Run all other operators on the cluster
340 Tokens per Second

490 µJ per Token

“MicroLlama” – 4.2 MParameter Llama model

Measured in-silicon Performance

Comparing TinyML compilers

30.09.2024 13

• Deeploy achieves SoA performance

• Benchmark TinyML workloads

• Emerging Small Foundation Models

• Deeploy supports your MCU platform

• ARM, RISC-V, Accelerators, emerging memories, NUMA, …

Embedded Tool Name
Supports

Transformers?
Supports

Accelerators?
Supports memory-aware

Tiling?
Open and

extensible?

TensorFlow Lite

STM Cube AI

GreenWaves NNTool

Dory

Deeploy

The Last Word

• Deeploy allows leveraging heterogeneous MCUs for multimodal AI

• Midend generates fully static memory allocation, including tiling

• Front- and Backend capable of exploiting dedicated accelerators

• Demonstrated fully on-chip SLM inference on an MCU

• Running entirely bare-metal, leveraging expert-optimized kernels

• 340 Tokens/sec @ 490 uJ/Token

• Everything’s open-source!

• Quantlib for DNN Training & Quantization

• Deeploy

• PULP-NN & PULP-NNX kernel libraries

• GVSoC Siracusa platform simulator

30.09.2024 14

github.com/pulp-platform/deeploy

	Slide 1: Deeploy: Enabling Energy-Efficient Deployment of Small Language Models On Heterogeneous Microcontrollers
	Slide 2: Today’s TinyML Application Landscape
	Slide 3: Towards Multi-modal TinyML
	Slide 4: The TinyML Compiler Gap
	Slide 5: Motivation & Contribution
	Slide 6: An End-to-end Edge AI Stack
	Slide 7: Deeploy’s Frontend – Engine-aware lowering
	Slide 8: Deeploy’s Midend – Tiling & Memory Allocation
	Slide 9: Deeploy’s Midend – Optimizing Memory Allocation
	Slide 10: Deeploy Backend – Vendor agnostic code generation
	Slide 11: Putting Deeploy into Practice - Siracusa
	Slide 12: Towards Small Foundation Models for TinyML
	Slide 13: Comparing TinyML compilers
	Slide 14: The Last Word

