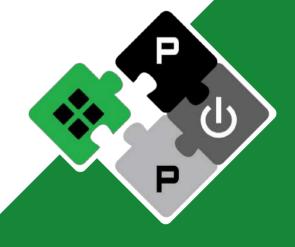


Wearable TinyML Platforms for Biosignal Intelligence Across the Body

Integrated Systems Laboratory (ETH Zürich)

Andrea Cossettini cosandre@iis.ee.ethz.ch



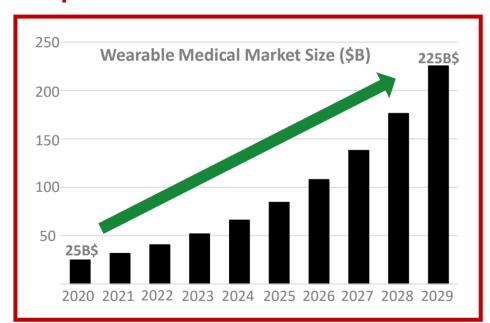
Open Source Hardware, the way it should be!

We want smarter wearables

We all want technologies to enhance our wellbeing in daily life

Health-monitoring

Rapid Growth in Wearables Market



mited on-device processing

New forms of interaction

assisted speaking controlling devices

Potential for more! biosignals

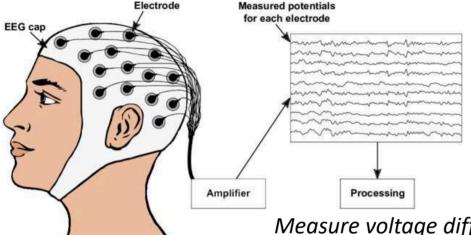
Heart rate. step count...

A lot has been possible with these simple data (health metrics, ...)

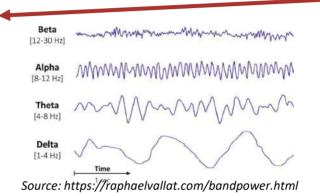
EEG headband

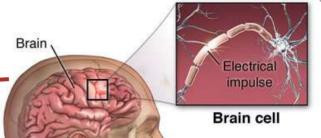
Biosignals + edge intelligence for enhanced living

But what are biosignals? A window into the body



Scalp attenuates signals by almost 90%





Source: https://www.hopkinsmedicine.org/health/conditionsand-diseases/epilepsy/evaluation-of-a-firsttime-seizure

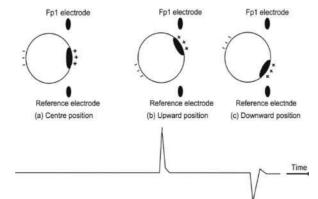
Measure voltage difference between electrodes on the scalp

Challenge: signal range from 10 μ V to 100 μ V \leftarrow low SNR

Electrooculography (EOG)

Measure the corneo-retinal standing potential, between front and back of the eye

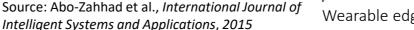
Eyes are dipoles



Intelligent Systems and Applications, 2015

And others...

- EMG (muscles)
- ECG (cardiac)



Our research on smart biomedical wearables



edgeAl on heterogeneous biosignals

GAP 9

Muscle Monitoring

Edge Node

Use cases: Human-Machine Interfaces & Epilepsy

Communicating with biosignals

- Decoding imagined speech from the brain (EEG)
- Decoding ocular movements (EOG) to type on a keyboard

Clinical application

 EEG to detect seizures

Let's start from the hardware design

What do we need for at-body biosignal intelligence?

A few key ingredients

Continuous raw data access, multi-node sync (BAN)

Long battery lifetime (full-day monitoring)

Low latency (sub-100ms for EMG-HMIs), privacy, low-power inference edge-Al-capable

Scalability: support multiple biosignals, form-factors, future modalities modularity

Integration in non-stigmatizing devices

Clinical-grade AFE

Bluetooth MCU

Low-power design

compactness

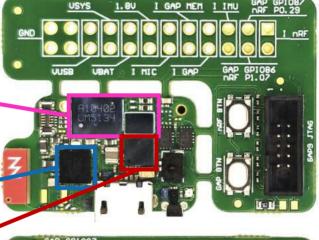
Designing the BioGAP platform: a modular approach

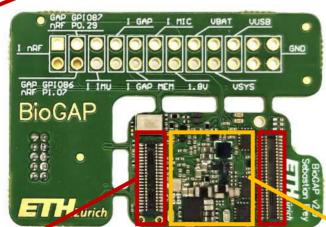
Baseboard

Memories512Mb RAM
512Mb Flash

edgeAl
GAP9 SoC
(9 RV cores
cluster;
400 MHz;

L1: 128kB; L2: 1.6 MB)



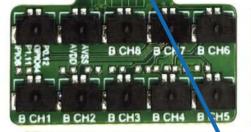


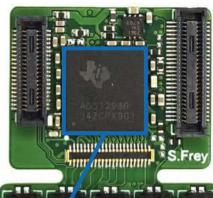
Biopotential PCB module

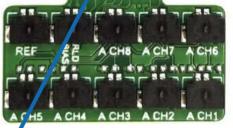
Bottom



Top







PPG

board-to-board connector for flexible placement

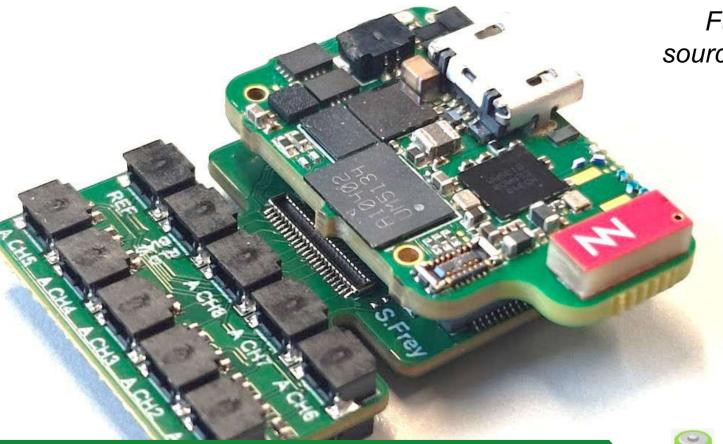
Biopotential Analog Front End

2x ADS1298 (16-ch.) [EEG, EMG, ECG]

power

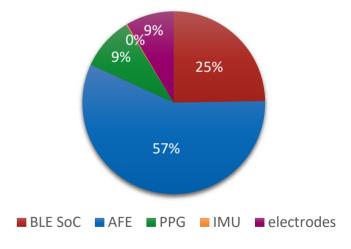
Connector for modules

BioGAP is our engine for biomedical applications



Fully open source design

Power consumption: 32.8 mW

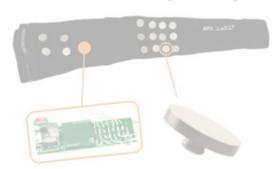


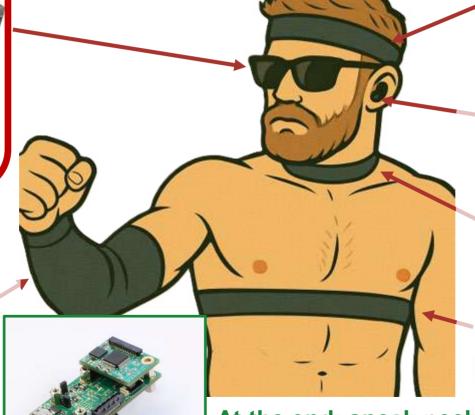
Let's bring it onto the body

>16h battery lifetime (150 mAh) for continuous sampling and wireless raw data transfer

One PCB, many form-factor embodiments

Arm sleeve (EMG)





necklace (EMG)

chest band (ECG)

At the end: sneak peek into next-gen technologies (wearable ultrasound)

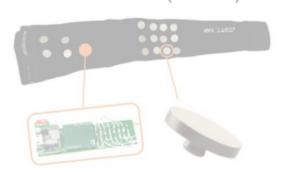
earbud (EEG)

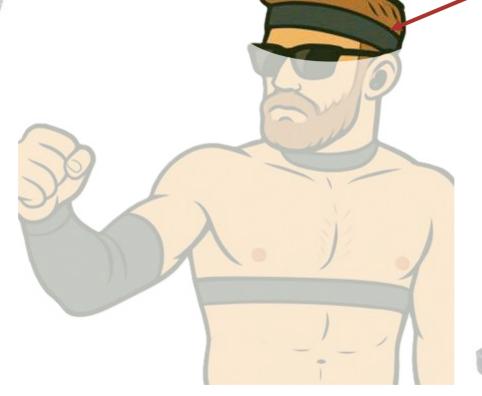
One PCB, many form-factor embodiments

earbud (EEG)

glasses (EEG, EOG)

Arm sleeve (EMG)





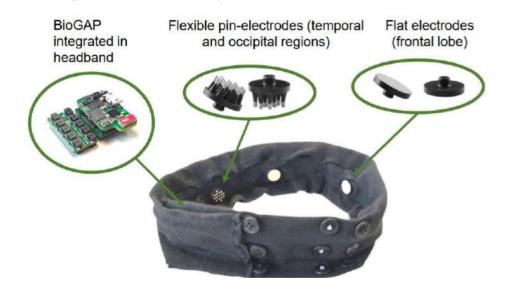
necklace (EMG)

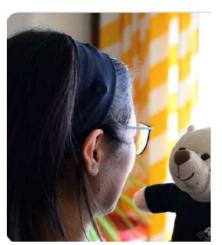
chest band (ECG)

Designing a Headband for EEG

Goal

- Enable easy self-use by patients (seizures)
- Comfortable monitoring during day and night (!)
- Side goal: usability also as HMI interface





Features

- 8 channels (across temporal and occipital lobes), fully-dry
- Easy to wear
- All cables integrated in the textile
- Powered by BioGAP for continuous data streaming and edgeAI

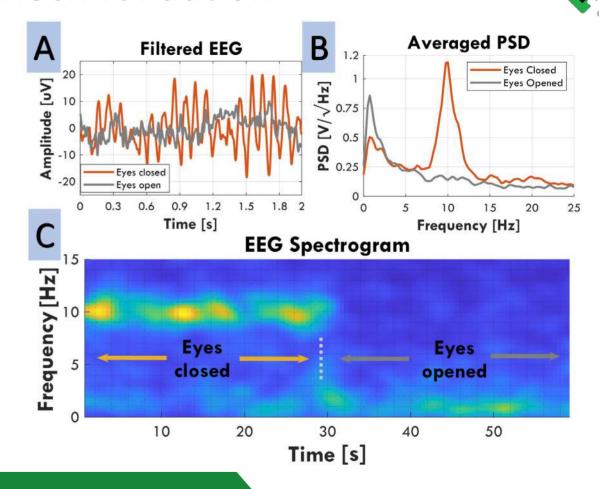
4-channels in the temporal area: enough for seizure detection? ML on public datasets

Channel locations on temporal and occipital lobes: OK for HMI? ML across hw design iterations

EEG Headband: functional check validation

- Measurement of alpha waves
 - Typical EEG patterns appearing when the subject closes the eyes

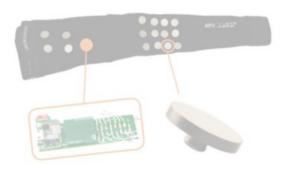
- RMS noise aligns with the IFCN standards for clinical recording of EEG signals (0.47 µV integrated RMS noise in 0.5 to 100 Hz)
- Alpha waves correctly measured



Passed basic functionality check

One PCB, many form-factor embodiments

chest band (ECG)



Designing EEG/EOG smart-glasses

Goal

- Non-stigmatizing platform for daily monitoring of seizures (EEG)
- Human-Machine Interface via eye movements

How to arrange EEG electrodes?

- Form-factor constraint
- we know it works (headband, temporal region electrodes)

What about EOG?

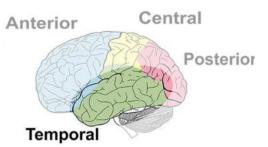
ML-based evaluation of glasses electrode placement vs conventional EOG electrode setups

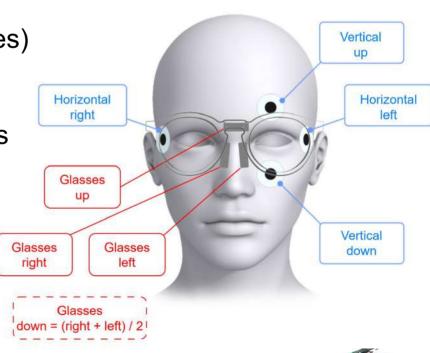
Traditional

- Wet sticky electrodes
- Active
- REF, Bias on mastoids
 REF, Bias on matoids

Glasses

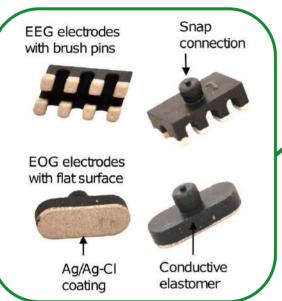
- Dry sheet electrodes
- Active



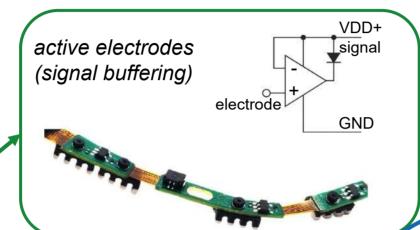


GAPses: versatile smart-glasses for EEG/EOG

ExG electrodes



Electrode interface PCB



3-ch. EOG

Raw data streaming **30mW**Online infer. (3-ch.EOG) **16mW**

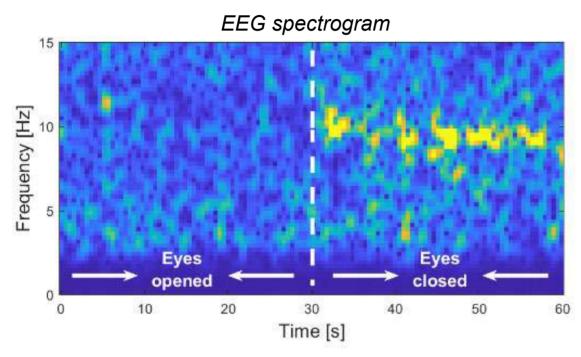
S. Frey et al., IEEE T-BioCAS, 2024

REF

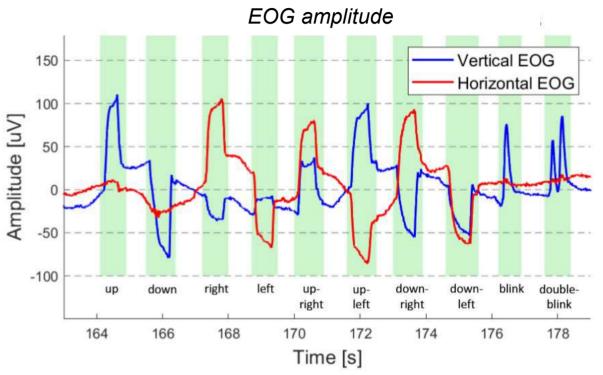
BIAS

EEG/EOG smart-glasses: functional check validation

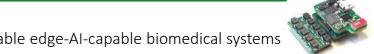
Measurement of alpha waves



Measurement of eye movements



Passed basic functionality check

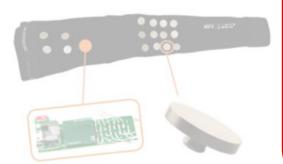


One PCB, many form-factor embodiments

earbud (EEG)

pookloop (FMC)

Arm sleeve (EMG)



Let's now bring the headband and glasses into use cases

We explored HMI and clinical use cases

Hardware TinyML

HW makes biosignals accessible

ML makes biosignals useful

ML applications aid the design of the HW HW enables on-device ML execution (privacy, latency, energy)

Human-Machine Interfaces (HMI)

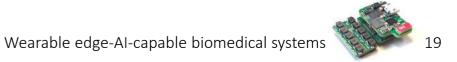
Seizure Detection

Headband for HMIs

Human-Machine Interfaces (HMI)

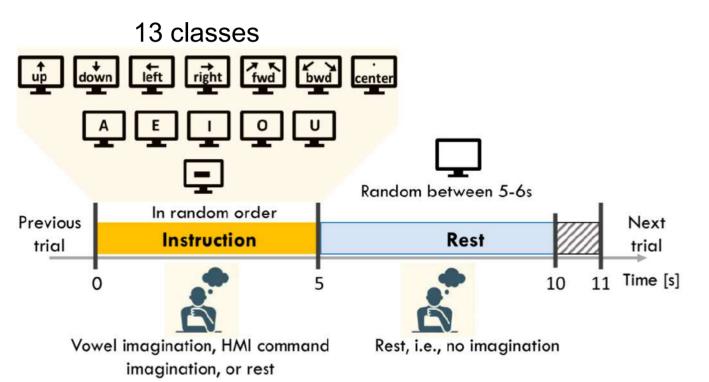
Seizure Detection

Using EEG signals to decode imagined letters/words



Headband for EEG speech-imagery

- What is speech imagery?
 - A subject "imagines" to speak (letters, words)
- The challenge: is it doable with such a compact, minimal setup (low channel count)?



VOWELNET ARCHITECTURE

Layer (Type)	#Filters	Kernel Size	Output Shape
Temporal Conv	F1	(1, 64)	(F1, C, T)
Batch Norm	-	=1	(F1, C, T)
Depthwise Conv	D * F1	(C, 1)	(D * F1, 1, T)
Activation	·=:		(D * F1, 1, T)
Pooling	-	(1, 4)	(D * F1, 1, T/4)
Dropout	-	=	(D * F1, 1, T/4)
Separable Conv	D * F1	(1, 16)	(D * F1, 1, T/4)
Conv	F2	(1, 1)	(F2, 1, T/4)
Batch Norm	-	9	(F2, 1, T/4)
Activation	-	=0	(F2, 1, T/4)
Pooling	-	(1, 8)	(F2, 1, T/32)
Dropout	0.20	±1	(F2, 1, T/32)
Flatten	9-3	= 3	(F2 * T/32)
Dense	N		(N)

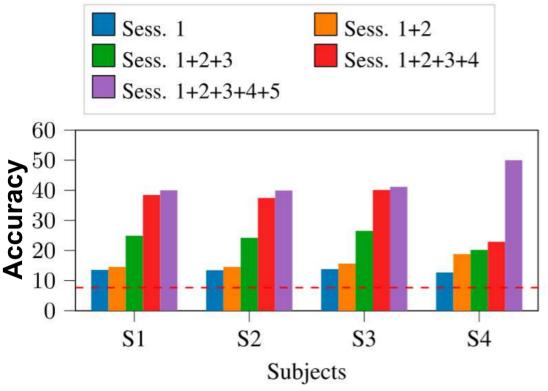
F1 = 32, D = 2, F2 = 64, N =Number of classes, C = Number of EEG channels, T = Number of time samples.

34k parameters, operating on 5s windows

Signal filtering: 50 Hz notch, 0.5-100 Hz bandpass, 0.5s moving average

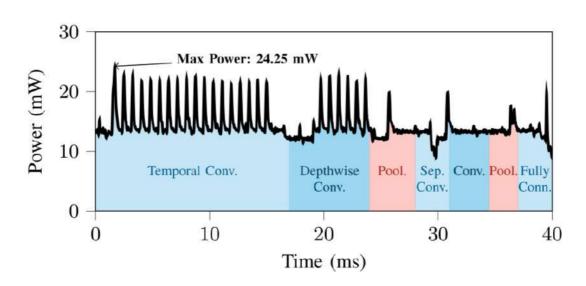
T. Ingolfsson et al., IEEE T-BioCAS, 2025

EEG speech-imagery on the edge



Subject-specific CV results (13-classes)

Efficient edge deployment (GAP9) 40.9 ms/inference, 0.71 mJ/inference

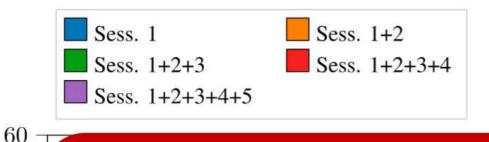


Wearable EEG can be used for words imagery on the edge (but long windows, 5s)

EEG speech-imagery on the edge

Fully Conn

40



Efficient edge deployment (GAP9) 40.9 ms/inference. 0.71 mJ/inference

Subject-specific CV results (13-classes)

mic (ms)

Wearable EEG can be used for words imagery on the edge (but long windows, 5s)

Accuracy

0

Glasses for HMIs

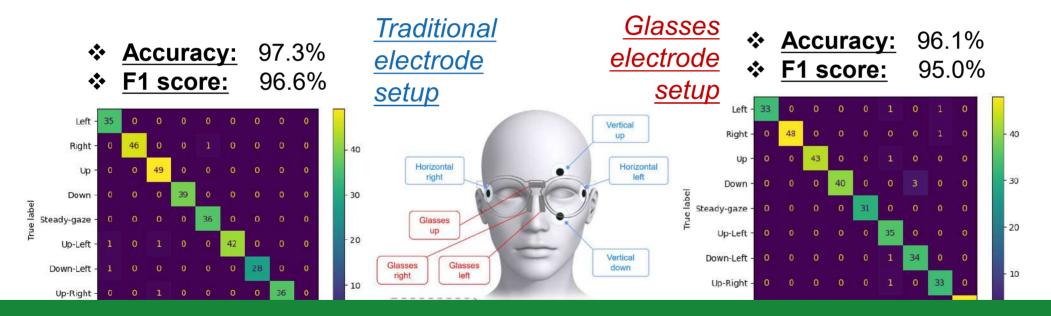
Human-Machine Interfaces (HMI)

Seizure Detection

Using EOG signals to type on a keyboard

But first: EOG on glasses, sufficient accuracy?

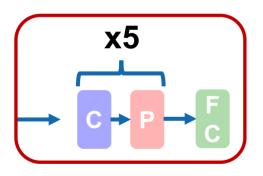
- Goal: evaluation of the EOG electrode setup choice
- Protocol: single-subject looking in different directions, 9-classes (up, down, left, right, diagonals, center: 9-classes)
- Data processing: filtering, handcrafted feature extraction, kNN classifier



EOG (dry) setup offers comparable accuracy to traditional (wet) electrode placement

EOG on smart-glasses in action

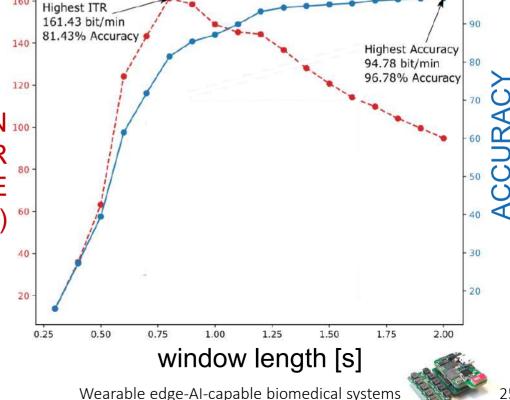
- Protocol: 5-subjects performing eye movements: 11 classes (looking up/down/left/right, diagonals, rest, blink, double-blink)
- **Data processing**: band-pass filtering (0.5-40 Hz), 2s moving average filter
- Classification: compact CNN (<10k parameters)

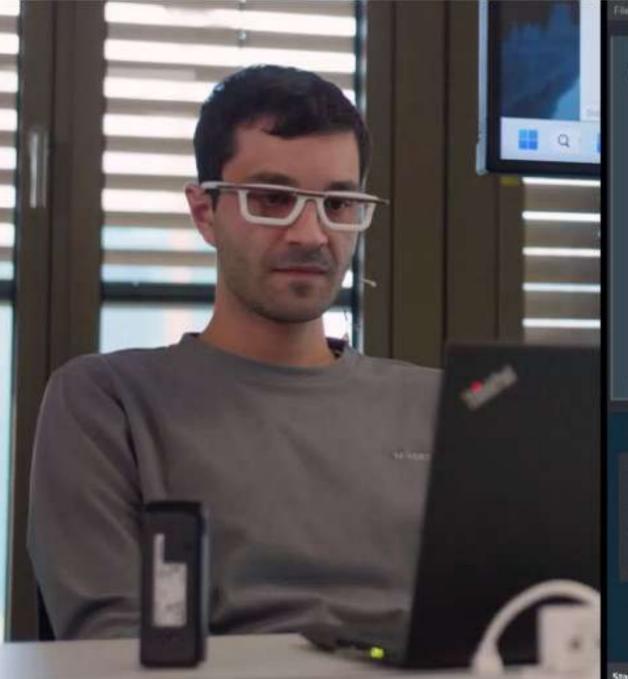


INFORMATION 100 TRANSFER RATE (bit/min)

Efficient edge deployment (GAP9):

1.5 ms/inference, 0.024 mJ/inference, 16.28 mW





- EEG Setting
- Plot Settings
- > Streaming
- External Trigger

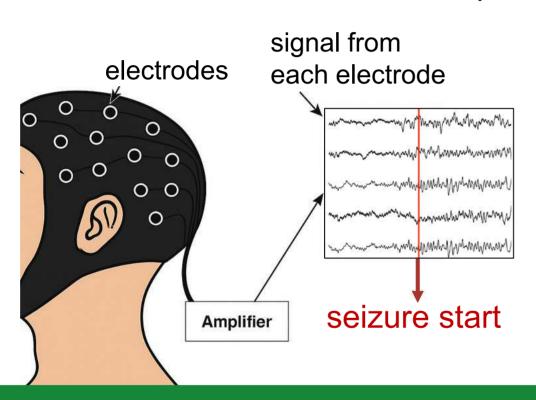
Clinical application: seizure detection

Human-Machine Interfaces (HMI)

Seizure Detection

Epilepsy

- Neurological disorder affecting >50M people globally
 - recurrent seizures that temporarily impair brain function



Need for wearable seizure detection

- Long-term recording in ambulatory patients
- Aiding assessment of seizure type/frequency
- Enabling seizure-triggered alarms

Key requirements

- Non-stigmatizing EEG devices
 - Full EEG-caps are not OK!
 - headband, smart-glasses, ...
- Algorithms
 - Maximize sensitivity
 - Minimize False Alarms (!!!), <1 FP/day

Our key starting points for developments in wearable EEG

Already existing seizure datasets as our first step

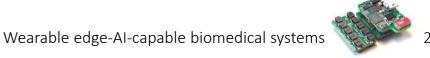
- Validation before HW design
 - seizure detection possible with few temporal channels?
- Design and stress-test ML algorithms with HW constraints (e.g. on-chip memory)
 - Validate edge deployment of the whole pipelines

CHB-MIT

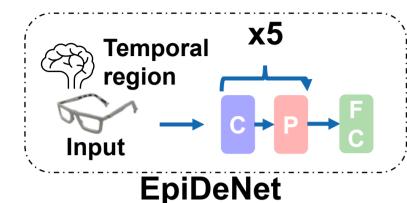
- 23 Pediatric Patients with 181 Seizures
- 256 Hz sampling rate
- Open-Source

PEDESITE

- 5 Adult Patients with
 25 Seizures
 (more available, not used here)
- 1024 Hz sampling rate
- EEG + synchronized PPG/IMU
- Private



EpiDeNet: efficient network for seizure detection



- ✓Operates on 2/3 only 4 temporal channels
- ✓ Hardware and algorithmic co-design
- ✓ Compact and Efficient, 11K parameters

91% Seizures detected 2.24 FP/h

Demonstrated good results with 4 channels. Can we do better?

A custom loss function

Sensitivity Specificity Weighted Cross Entropy Loss (SSWCE)

 $SSWCE(y, p) = CE(y, p) + \alpha(1 - SP) + \beta(1 - SN).$

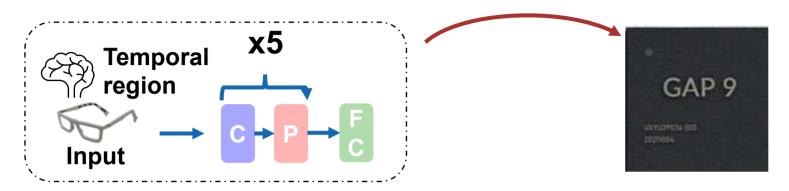
92% Seizures

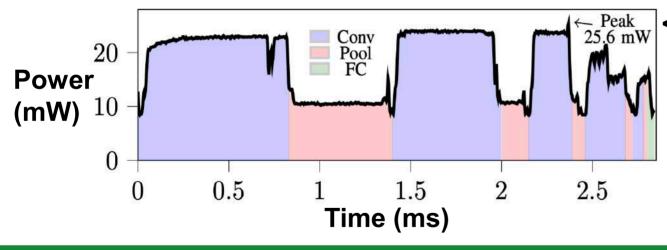
detected

1.18 FP/h

Let's now deploy it on the edge

EpiDeNet can run on the edge for >300 hours





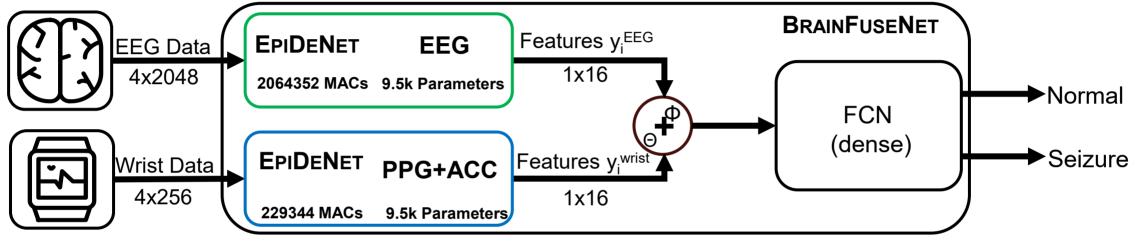
< 26mW Power Envelope 0.051 mJ per inference 300mah battery

→ 300 hours

We now have a good baseline seizure detector for edge devices

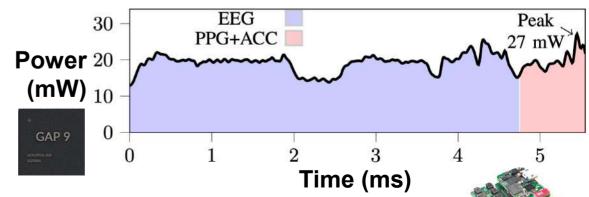
Sensor fusion further reduces false positives

PEDESITE dataset (EEG + PPG/ACC)



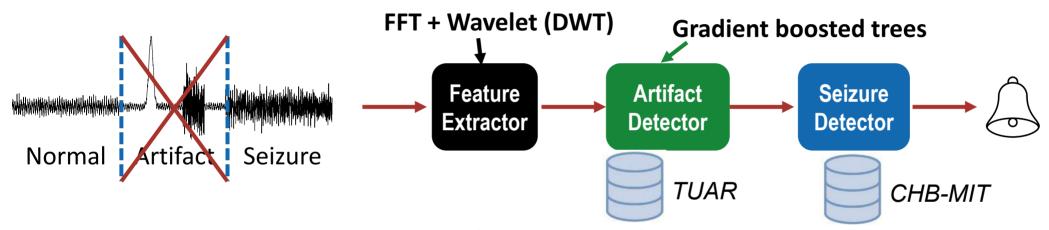
0.11 mJ per inference, **19.25 mW** avg.

	Data	Sens.	FP/h
EpiDeNet	EEG	60.7	1.18
BrainFuseNet	EEG+ PPG+ACC	64.28	0.21



A seizure detector alone is not enough for wearables

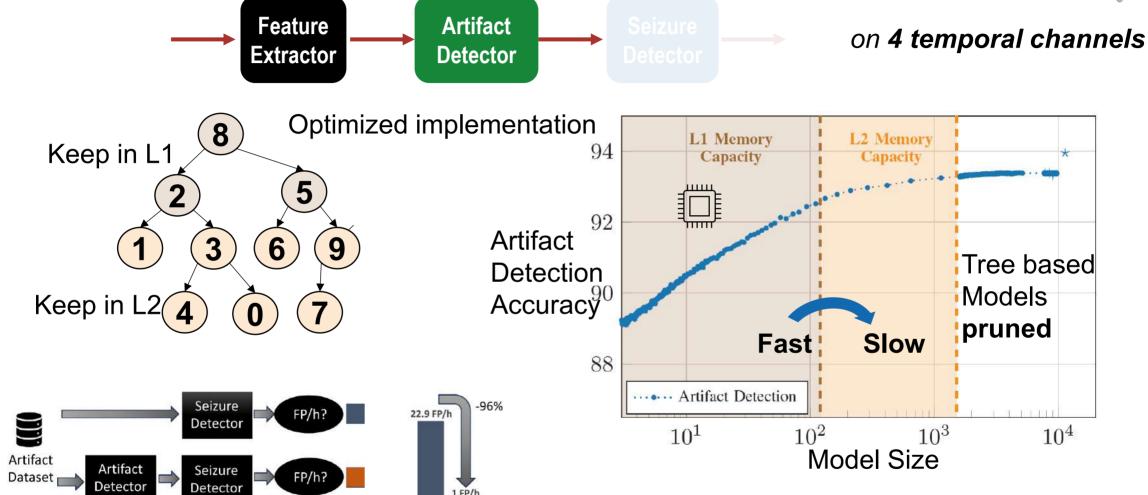
- Most public datasets have clean, artifact-free data
 - But most of wearable data will be artifact rich
 - Artifacts are the main source of false alarms



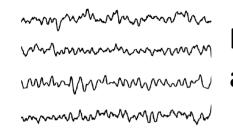
- Problem: no dataset labelled for both artifacts and seizures
 - use separate datasets to prepare pipelines for future wearables

Let's make the artifact detector

Optimizing a tree-based artifact detector for the edge



Edge deployment of EEG artifact + seizure detector



Data streaming in at 250-500 Hz

16/32 kB per 4s window (4 channels)

Feature extraction

4 Cores FFT Features

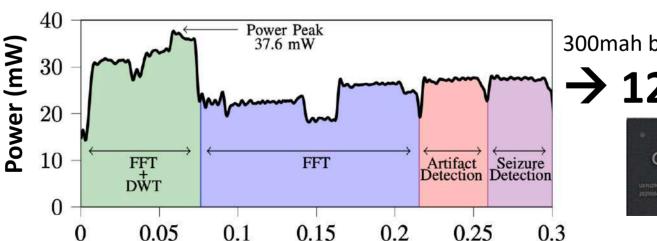
4 Cores DWT Features

1 Core for memory transfers

Artifact/Seizure Detection

of trees Divisible by number of Cores

7.93 μJ energy per 4 s window



Time (ms)

300mah battery

12.5 days

T. M. Ingolfsson et al., Sci. Rep., 2024

T. M. Ingolfsson, ETHZ PhD Diss.-No. 31324

Wearable edge-Al-capable biomedical systems

These ML works progressed while developing the HW

17 adult patients, >150h of recordings, 3 seizures study still in progress

ETH zürich Swiss National Science Foundation

BioGAP headband and smart-glasses are in use in clinical studies

Our next step will be closing the loop

online execution of the proposed algorithms on our data & our devices, for real-time feedback to patients and caregivers

Recap of form factors and applications

From one hardware platform... To many wearable form factors

So far we discussed only signals on the body surface: going deep?

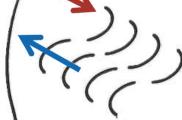
Don't stop at the skin: a glimpse into ultrasound

Emission of acoustic waves and detection of the reflected signals

Ultrasound probe (piezoelectric)

Transmission:

acoustic waves emitted into the body

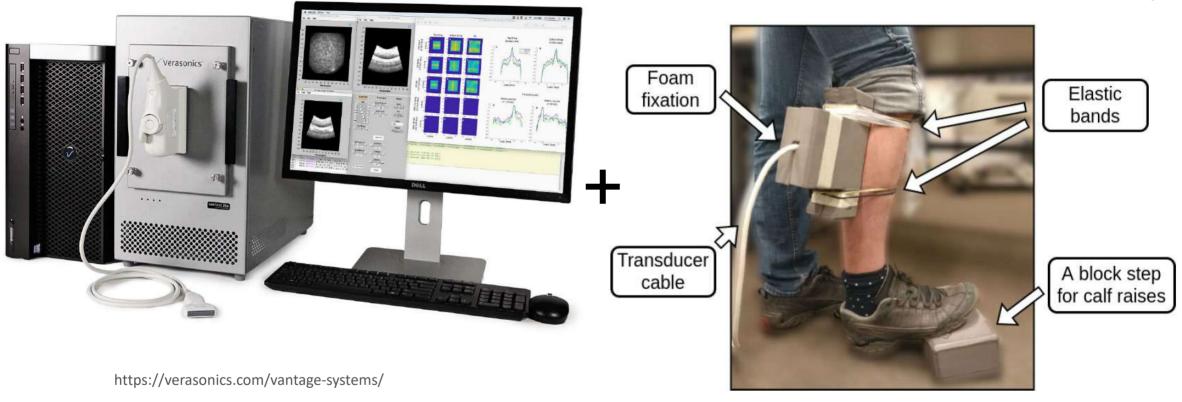


Reception:

waves reflected back to the probe (conversion to electrical signals)

Standard tool in clinical practice (safe, real-time, low cost)

Research ultrasound is evolving from bulky systems...



Vostrikov et al, EMBC 2022.

Innovations in digital electronics enabled to bring computing at the transducer

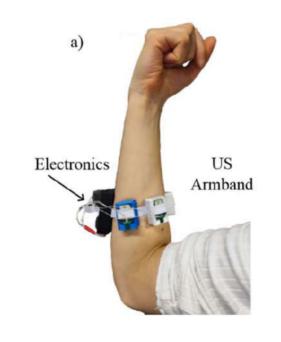
... to truly wearable ultrasound probes

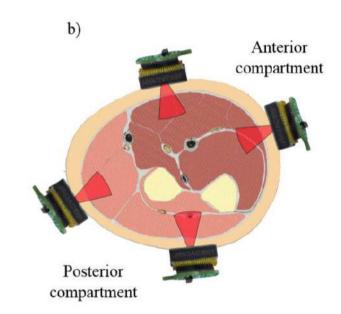
Frey et al. IEEE IUS, 2022

Vostrikov et al., IEEE T-UFFC, 2024

WULPUS: wearable ultra-low-power ultrasound

OPEN-SOURCE DESIGN (hw, fw, sw): https://github.com/pulp-bio/wulpus

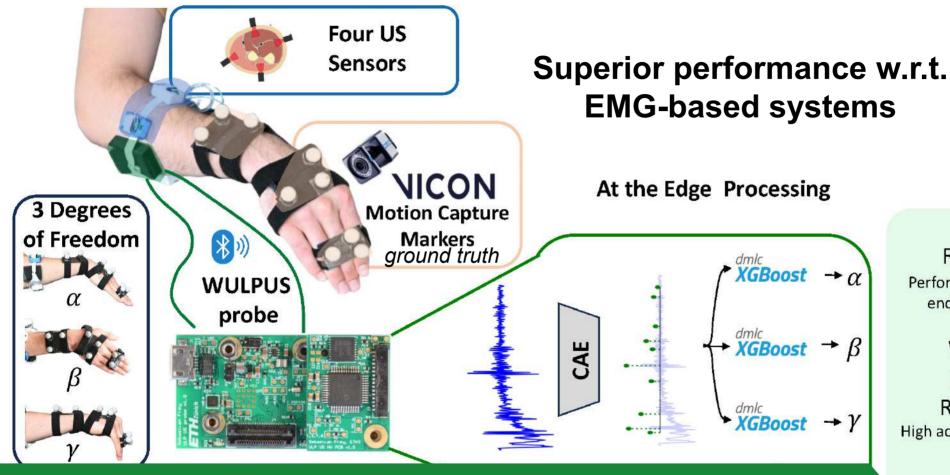




HV PCB Acquisition PCB OPA836 T/R switch HV 2708 Echo MSP430 8:1 Multiplexer MCP1416 PULSER MCU ADC 3.3V M SPI Raw US signal nRF52832 **BLE MCU** Host PC Transducer nRF52840 Common carotid Dongle artery

Vostrikov et al. IEEE IUS, 2023

Example application: hand-movements recognition



Results

Baseline:

RMSE: 7.3°± 2.0°

Performance comparable to highend, 256-channels, B-mode

With Armband Repositioning:

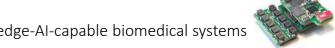
RMSE: 11.1°±4.1

High accuracy in real-life conditions

On Device:

80ms/inference <30mW

Ultrasound is becoming a key technology for wearable sensing

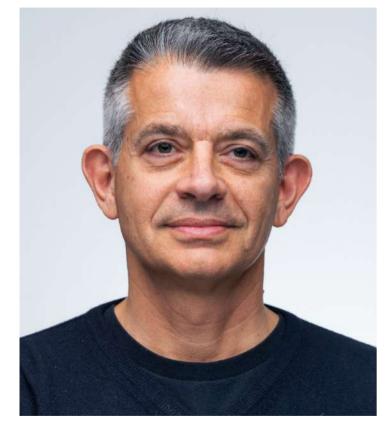


The Future

- Body area networks for distributed sensing
- Open-platforms enable rapid innovation
- EdgeAl for privacy, energy-efficiency, real-time closed-loop
- Foundation Models on wearables
 - aggressive HW-SW co-optimization for fast inference at low power
- On-device customization (zero-shot, few-shot)
- Multimodality: exploit signal heterogeneity (sensor fusion) and next-gen wearable technologies
 - fNIRS, mm-Wave sensing, optoacoustics

Acknowledgment: work by the PULP team

Led by Luca Benini



A. Cossettini

V. Kartsch

C. Leitner

X. Wang

S. Benatti



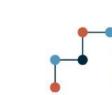
T. Ingolfsson

S. Frey

S. Vostrikov

F. Villani G. SpaconeA.H. Bernardi

and many more...



Swiss National Science Foundation

project PEDESITE

https://pulp-platform.org/

