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Energy efficiency challenge: Exascale  
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100 EFLOPS

10 EFLOPS

1 EFLOPS

100 PFLOPS

10 PFLOPS 2 nJ/FLOP

1 PFLOPS 200 pJ/FLOP

100 TFLOPS 20 pJ/FLOP

10 TFLOPS 2 pJ/FLOP

1 TFLOPS 0.2 pJ/FLOP

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

2
0

2
3

2
0

2
4

2
0

2
5

2
0

2
6

2
0

2
7

2
0

2
8

2
0

2
9

2
0

3
0

2
0

3
1

2
0

3
2

2
0

3
3

x10 every 4 years 

/10 every 4 years 

HPC is now power-bound need 10x energy efficiency improvement every 4 years 

PERFORMANCE 

ENERGY PER 

OPERATION* 

*20MWatt supercomputer: Performance & EnOP  

1EFLOPs 200pj/FLOP 
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Energy efficiency Challenge: Extreme Edge  

MCU 

Memory 

AD,DA,IO 

100mA/h 1month 
1% duty cycle 

10uA sleep 
10mA active 

1-10pJ/OP 
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Flexibility needed!  

+ FFT, PCA, Mat-inv,… 
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Near-Threshold Multiprocessing on an Open ISA 

6 

. . . . . 

Shallow Pipeline 
3 stages+1for LD/ST 

I$B0 I$Bk 

DEMUX 

L1 TCDM+T&S MB0 MBM 

Shared L1 DataMem + Atomic Variables 

DMA + HW SYNCH 

Tightly Coupled DMA 
And Hardware Sychronizer 

Periph 

+ExtM 

N Cores  
PE0 PEN-1 

Need extensible ISA, Need full access to “deep” core interfaces, need to tune pipeline, 
RV32IMC  + New, Open Microarchitecture + ISA Extensions 

Need flexibility + energy efficiency  Processor + Low Vdd + Parallel + ISA extensions  
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Xpulp extensions 
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 <32-bit precision  SIMD2/4  x2,4 efficiency & memory 

size 
 

RISC-V  V1 

V2 

V3 

HW loops 
Post modified Load/Store 
Mac 

SIMD 2/4 + DotProduct + Shuffling 

Bit manipulation unit 
Lightweight fixed point 

V2 

V3 

Baseline RISC-V RV32IMC V1 

25KG  40KG  (1.6x)  

Risc-V ISA is extensible by construction (great!) 
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RI5CY – are xPULP ISA Extensions (1.6x) worthwhile? 

for (i = 0; i < 100; i++)  

    d[i] = a[i] + b[i]; 

mv   x5, 0 
mv   x4, 100 
Lstart:  
  lb    x2, 0(x10) 
  lb    x3, 0(x11) 
  addi  x10,x10, 1 

  addi  x11,x11, 1 

  add   x2, x3, x2 
  sb    x2, 0(x12) 
  addi  x4, x4, -1 
  addi  x12,x12, 1 

bne     x4, x5, Lstart 

Baseline 

11 cycles/output 

mv   x5, 0 
mv   x4, 100 

Lstart:  
  lb   x2, 0(x10!) 

  lb   x3, 0(x11!) 

  addi x4, x4, -1 

  add  x2, x3, x2 
  sb   x2, 0(x12!) 

bne    x4, x5, Lstart 

 

8 cycles/output 

Auto-incr load/store 
 

lp.setupi 100, Lend 

  lb   x2, 0(x10!) 
  lb   x3, 0(x11!) 
  add  x2, x3, x2 
Lend:  sb x2, 0(x12!) 

HW Loop 
 

5 cycles/output 

lp.setupi 25, Lend 

  lw  x2, 0(x10!) 
  lw  x3, 0(x11!) 
  pv.add.b x2, x3, x2 
Lend: sw x2, 0(x12!) 

Packed-SIMD 
 

1,25 cycles/output 

8 

10x on 2d 

convolutions 

…YES! 
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Need a “range of cores” 

70KG 

50KG 
25 
KG 

15
KG 

RI5CY 

Zero-riscy 
Micro-riscy 

RI5CY+FPU 

200KG 

Ariane 

uW HPC 

32b 64b 

Control Control 
+ Data  

Control 
+ DSP  

Control 
+ DSP+FP  

“Linux” 
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RISC-V Cores 

RISC-V cores 

RI5CY 

 

32b 

Micro 

riscy 

32b 

Zero 

riscy 

32b 

Ariane 

 

64b 
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Accelerators 

Interconnect Peripherals RISC-V Cores 

Cores+IOs+Intercos+Accelerators 

RI5CY 

 

32b 

Micro 

riscy 

32b 

Zero 

riscy 

32b 

Ariane 

 

64b 

AXI4 – Interconnect DMA GPIO 

APB – Peripheral Bus I2S UART 

Logarithmic interconnect SPI JTAG 

Neurostream 

(ML) 

HWCrypt 

(crypto) 

PULPO 

(1st order opt) 

HWCE 

(convolution) 
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Platforms 

Accelerators 

Interconnect Peripherals RISC-V Cores 

All these components are combined into platforms 

RI5CY 

 

32b 

Micro 

riscy 

32b 

Zero 

riscy 

32b 

Ariane 

 

64b 

AXI4 – Interconnect DMA GPIO 

APB – Peripheral Bus I2S UART 

Logarithmic interconnect SPI JTAG 
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Single Core 

• PULPino 
• PULPissimo 

Multi-core 

• Fulmine 
• Mr. Wolf 

Multi-cluster 

• Hero 

uW HPC 

R5 
R5 
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At the extreme edge: The Mr Wolf IoT Processor 

13 
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8-Processor PULP Cluster: Parallel Speed-up 

14 

Amdahl’s Limit 

Speed-Up 
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Mr. Wolf Chip Results: Heterogeneous Computing Works 

Technology CMOS 40nm LP 

Chip area 10 mm2 

VDD range 0.8V - 1.1V 

Memory Transistors 576 Kbytes 

Logic Transistors 1.8 Mgates 

Frequency Range 32 kHz – 450 MHz 

Power Range 72 µW – 153 mW 

Power Managent 
(DC/DC + LDO) 

VDD [V] Freq. Power 

Deep Sleep 0.8 n.a. 72 µW 

Ret. Deep Sleep 0.8 n.a. 
76.5 - 108 

mW 

SoC Active 0.8 - 1.1 
32 kHz - 
450 MHz  

0.97 -  
38 mW 

Cluster Active 0.8 - 1.1 
32 kHz - 
350 MHz 

1.6 -  
153 mW 

15 

Max perf 16.4 GOp/s, Max En.Eff. 274 MOp/s/mW 
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 22nm FDX technology 

 Two application-class RISC-V 
Ariane cores [1] - DP 

 RV64GCXsmallfloat 

 General purpose workloads 

 Network Training Accelerator (NTX) 
[2] - FP 

 Accelerates oblivious kernels: 

 Deep neural network training 

 Stencils 

 General linear algebra workloads 

 1.25 MiB of shared L2 memory 

 Peripherals 

16 

Back to HPC: Kosmodrom 

Need 64 bit address space, virtual memory, FP & DP, scaled technology 
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Architecture: Floorplan 
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 RV64GC, 6-stage, in-order, out-of-order execute 

 16 KiB instruction cache, 32 KiB data cache 

 Transprecision floating-point unit (TP-FPU) [3] 
 double-, single- and half-precision FP formats 

 Two custom formats FP16alt and FP8 

 All standard RISC-V formats as well as SIMD 

 Two different implementations: 
 Ariane High Performance (AHP): tuned for high-performance applications 

 Ariane Low Power (ALP): tuned for light, single-threaded applications 

18 

Architecture: Ariane RISC-V Cores 
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 “Network Training Accelerator” 
 32 bit float streaming co-processor 

(IEEE 754 compatible) 

 Custom 300 bit “wide-inside” Fused 
Multiply-Accumulate 

 1.7x lower RMSE than conventional 
FPU 

 1 RISC-V core (”RI5CY”) and DMA 

 8 NTX co-processors 

 64 kB L1 scratchpad memory 
(comparable to 48 kB in V100) 

Key ideas to increase hardware efficiency: 

 Reduction of von Neumann bottleneck 
(load/store elision through streaming) 

 Latency hiding through DMA-based 

double-buffering 

 

19 

Architecture: Network Training Accelerator (NTX) 
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Flexible Architecture NTX accelerated cluster 

 1 processor core controls 8 NTX coprocessors 

 Attached to 128 kB shared TCDM via a logarithmic interconnect 

 DMA engine used to transfer data (double buffering) 

 Multiple clusters connected via interconnect (crossbar/NoC) 
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Network Training Accelerator (NTX) 

 Processor configures Reg IF and manages DMA double-buffering in L1 memory 

 Controller issues AGU, HWL, and FPU micro-commands based on configuration 

 AGUs generate address streams for data access 

 FMAC with extended precision + ML functions 

 Reads/writes data via 2 memory ports (2 operand and 1 writeback streams) 

 

RiscV 
core 

1 for 8 

M
u
ltib

a
n
k
e
d
 L

1
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Again: specialized “deep interfaces” + Instruction extensions 
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2 mem. acc. (“[…]”) 
8 reg. acc. 

2 mem. acc. (“[…]”) 
0 reg. acc. 
(+ addr. calc for free) 

FMAC accu, [AGU0], [AGU1] 
LDS  R2, [R0] 

LDS  R3, [R1] 

FFMA R4, R2, R3, R2 

Volta Assembly NTX Pseudocode 

NTX Power Breakdown & GPU SM Comparison 

 NTX dissipates significant fraction of power in its 
FPU (more is better): 
 31%  of cluster 

 14%  of entire HMC 

 Recall: GPU is just around 5%  [1] 

 Compared to NVIDIA Volta GPU [2]: 
 Register file in GPU holds registers and thread-local data 

 Each register read/write is an SRAM access 

 Register and data accesses compete for SRAM 

 

 

 

= 10 SRAM hits total = 2 SRAM hits total 

1 Volta SM 8 NTX cl. 

64 FPUs 64 FPUs 

256 kB RF 
128 kB L0 
Cache 

512 kB TCDM 

32-2048 threads 8 threads 

22 
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 Flexible (cycle by cycle) precision modulation (FP) 

 Save precious DRAM bandwidth 
 Custom number formats 

 Use float8, float16, float16alt 

Low-Bitwidth Floating point Formats 

23 
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 General purpose cores to run operating 
system 

 Specialized workloads are off-loaded to 
the NTX 

 NTX is 6x more energy efficient (41 vs 
266 Gflop/sW) for oblivious kernels 

 Accelerator 

 FP precision 

 NTX provides 18x the performance (1.5 
vs 24 Gflop/s)  

 

Florian Zaruba 24 

Chip Measurements Results: Core vs. Accelerator 

29.11.2019 
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 AHP and ALP manufactured with two 
different cell libraries 

 AHP tuned for high-performance, 
using fast, short-channel transistors 

 20nm, 24nm, 28nm 

 0.8V nominal voltage 

 Fast, single-ported SRAMs for caches 

 ALP tuned for minimizing power, 
using slower, lower leakage cells 

 28nm, 32nm, 36nm 

 0.5V nominal voltage 

 Low power, single-ported, dual-supply 
SRAMs 

 

 AHP: 0.85 GHz, 50.2 mW total power, 
4.6 % leakage power 

 ALP: 0.175 GHz, 6.2 mW total power, 
2.8 % leakage power 

25 

Results: Cell Library (Technology) 
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 Flip-well transistors enable forward 
body bias (FBB) 

 FBB lowers VTH  

 Up to 383 MHz speed-up 

 FBB can be used for frequency 
centering at low voltage for ALP 

 Extra frequency boost at high supply 
voltages for the AHP and NTX 

26 

Results: Body Bias Voltage 
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 AHP runs up to 1.6 GHz 

 NTX runs up to 2 GHz (limited by the 
on-chip clock generation capabilities) 

 ALP tuned for background-tasks at 
lower speeds 

 175 MHz at 0.5V (nominal voltage) 

 At high frequencies AHP becomes 
more efficient 

 At low speeds ALP is more efficient 
due to reduced leakage 

 AHP and ALP cover complementary 
operating conditions 

27 

Results: Supply Voltage 
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 Trade-off floating point precision for 
instruction energy 

 Energy cost of FP operations is 
super linearly proportional to data 
width 

 Smaller FP formats take less 
latency to complete 

 SIMD style vectors yield higher 
throughput 

 Improve energy to solution and 
time to solution up to 7.95x and 
7.6x for FP8 workloads 

 

 

28 

Results: FP Precision and Energy trade-off 
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 We achieve higher energy-

efficiency for AHP and ALP than 
competitive RISC-V processors 
(Rocket) 

 Ariane contains slightly larger caches 
(32 KiB compared to 16 KiB) 

 The ALP implementation is penalized 
because of less mature cell libraries 
available to us (7k cells vs 2k cells) 

 NTX achieves a 2x gain in energy-
efficiency compared to Tesla V100 

 

29 

Summary on Kosmodrom: State of the Art 
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Ariane 
1GHz 

2 DP-GFLOPS 
8 GB/s 

 
I$, D$ 

Instruction Data 

Interconnect 

64b 

64b 64b 

Efficient & High performance DP: Ariane is not Enough! 
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Ariane 
1GHz 

2 DP-GFLOPS 
8 GB/s 

 
I$, D$ 

Instruction Data 

Interconnect 

256b 

64b 64b 

Ara 
1GHz 

16 DP-GFLOPS 
32 GB/s 

 
VRF 

Data 

256b 

Instruction 
Queue 

ACK/TRAP 

Enter ARA: Open-Source RISCV Vector Engine 
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Memory Bandwidth 

 Arithmetic intensity 
– Operations per byte: data reuse of 

an algorithm 

– One FMA → two operations 

 

 Memory-boundness and 
compute-boundness 

 

 Ara targets 0.5 DP-FLOP/B 
– Memory bandwidth scales with the 

number of physical lanes 

Compute-bound 
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RISC-V Vector Extension 

 RISC-V “V” Extension 
– Cray-like vector processing, opposed to packed-SIMD 

 

 

 

 

 Ara is based on the version 0.5 
– Work is being done to update it to the latest version 

– Open-source in 2020 (Q1) 

t 

F
E

T
C
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E

 

EXECUTE 
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Ara main datapath elements 

 ALU, MUL and FPU 

 Transprecision functional units 
– Throughput of 64 bit per cycle 

– Packed-SIMD approach 

 FPU 
– FP64, FP32, FP16, bfloat16 

– Independent pipelines for each data 
type 

• Each with a different latency 
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Vector Lane: base computational unit 

 Per-lane Vector Register File 
– 8 x 1RW SRAM banks 

– Functional units only access their 
own section of the VRF 

– Requires an arbiter (banking 
conflicts) 

 Operand queues 
– Hide latency due to banking conflicts 

on the VRF 

– One FIFO per operand per datapath 
unit: 10 x 64b queues 

– Similar queues for output operands 
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Ara with N identical vector lanes 

 Instruction forked from Ariane’s 
issue stage 
– Instructions are issued non-

speculatively 
– Bookkeeping by the sequencer 

 Load/Store and Slide Units 
access all the VRF 
– Connected to each lane 
– Scalability issue 

 W = 32.N bits wide memory 
interface 
– Keep Ara performance per 

bandwidth ratio at 0.5 DP-FLOP/B 
 



| | 

Matrix Multiplication on ARA 

 DP-MATMUL 
– n x n double-precision matrix 

multiplication 

– C ← A · B + C 

 

 32n² bytes of memory transfers 
and 2n³ operations 
– n/16 DP-FLOP/B 

– Compute-bound in Ara for n > 8 Functional unit’s utilization for a 16x16 DP-MATMUL 
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Up to 98% Efficiency on nxn DP-MATMUL 
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Up to 98% Efficiency on nxn DP-MATMUL (always?) 
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Matrix multiplication on Ara 

 Standard algorithm (row times column + reduction) is slow 
– Highly sequential 

 Use a vector of reductions instead 

b11 b12 b13 

b20 b21 b22 b23 

b31 b32 b33 

b10 

b30 

b00 b01 b02 b03 

x 

a00 a01 a02 a03 
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a00b00  

a00b01 

a00b02 

a00b03 

Matrix multiplication on Ara 

 Standard algorithm (row times column + reduction) is slow 
– Highly sequential 

 Use a vector of reductions instead 

b11 b12 b13 

b20 b21 b22 b23 

b31 b32 b33 

b10 

b30 

b00 b01 b02 b03 

x 

a00 a01 a02 a03 
a00 

a00 

a00 

a00 

b00 

b01 

b02 

b03 

vA vB 

MAC 

a00 b00 b01 b02 b03 
vC 
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a00b00 + a01b10 

a00b01 + a01b11  

a00b02 + a01b12 

a00b03 + a01b13 

Matrix multiplication on Ara 

 Standard algorithm (row times column + reduction) is slow 
– Highly sequential 

 Use a vector of reductions instead 

b11 b12 b13 

b20 b21 b22 b23 

b31 b32 b33 

b10 

b30 

b00 b01 b02 b03 

x 

a00 a01 a02 a03 
a01 

a01 

a01 

a01 

b10 

b11 

b12 

b13 

vA vB 

MAC 

vC 

a00b00  

a00b01 

a00b02 

a00b03 
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Matrix multiplication on Ara 

 Load row i of matrix B into vB 

 for (int j = 0; j < n; j++) 

–  Load element A[j, i] 

 

–  Broadcast it into vA 

–  vC  ← vA . vB + vC 

vld vB, 0(addrB) 

(Unrolled loop) 

 ld t0, 0(addrA) 

 addi addrA, addrA, 8 

 vins vA, t0, zero 

 vmadd vC, vA, vB, vC 

 ld t0, 0(addrA) 

 addi addrA, addrA, 8 

 vins vA, t0, zero 

 vmadd vC, vA, vB, vC 
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Issue rate performance limitation 

 vmadds are issued at best 
every four cycles 
– Since Ariane is single-issue 

 If the vector MACs take less 
than four cycles to execute, 
the FPUs starve waiting for 
instructions 
– Von Neumann Bottleneck 

 This translates to a boundary 
in the roofline plot 
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Ara: 4 lanes GF 22FDX 1.25 GHz implementation  

 

Lane 0 Lane 1 

Lane 2 Lane 3 

Ariane 
Front-end 

VLSU 

SLDU 

(TT, 0.80V, 25˙C) 
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Ara: Figures of Merit 

 Clock frequency 
 1.25 GHz (nominal), 0.92 GHz (worst 

condition) 
 40 gate delays 

 

 Area: 3400 kGE 
 0.68 mm2 

 

 256 x 256 MATMUL 
 Performance: 9.8 DP-GFLOPS 
 Power: 259 mW 
 Efficiency: 38 DP-GFLOPS/W 
 ⁓2.5X better than Ariane on same  

benchmark 
 

 Area breakdown 
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Ara: Scalability 

 Each lane is almost independent  
– Contains part of the VRF and its 

functional units 

 Scalability limitations 
– VLSU and SLDU: need to 

communicate to all banks 

 Instance with 16 lanes: 
– 1.04 GHz (nom.), 0.78 GHz (w) 

– 10.7 MGE (2.13mm²) 

– 32.4 DP-GFLOPS 

– 40.8 DP-GFLOPS/W 

VLSU 

Ariane 

SLDU 

16 ARAs give you 1TFLOP at 12W - NOT BAD!  
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OpenPiton+Ariane 

 New write-through 
cache subsystem 
with invalidations 
and the TRI 
interface 

 LR/SC in L1.5 cache 

 Fetch-and-op in L2 
cache 

 RISC-V Debug 

 RISC-V Peripherals 

48 

If you are really passionate about cache coherent “scalable” machines… 

Note: ARA plugs in nicely at the L1 interface! 
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Component Configurability Options 

Cores (per chip) Up to 65,536 

Cores (per system) Up to 500 million 

Core Type OpenSPARC T1 Ariane 64 bit RISC-V 

Threads per Core 1/2/4 1 

Floating-Point Unit FP64, FP32 FP64, FP32, FP16, FP8, 
BFLOAT16 

TLBs 8/16/32/64 entries Number of entries (16 entries) 

L1 I-Cache Number of Sets, Ways (16kB, 4-way) 

L1 D-Cache Number of Sets, Ways (8kB, 4-way) 

L1.5 Cache Number of Sets, Ways (8kB, 4-way) 

L2 Cache Number of Sets, Ways (64kB, 4-way) 

Intra-chip Topologies 2D Mesh, Crossbar 

Inter-chip Topologies 2D Mesh, 3D Mesh, Crossbar, Butterfly Network 

Bootloading SD/SDHC Card, UART, RISC-V JTAG Debug 

Configurability Options 
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FPGA Prototyping Platforms 

Available: 

 Digilent Genesys2 

 $999 ($600 academic) 

 1-2 cores at 66MHz 

 Xilinx VC707 

 $3500 

 1-4 cores at 60MHz 

 Digilent Nexys Video 

 $500 ($250 academic) 

 1 core at 30MHz 

In progress: 

 Xilinx VCU118, BittWare 
XUPP3R 

 $7000-8000 

 >100MHz 

Amazon AWS F1 
 Rent by the hour 

50 
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Platforms 

Accelerators 

Interconnect Peripherals RISC-V Cores 

A Computing Ecosystem Perspective 

RI5CY 
 

32b 

Micro 
riscy 

32b 

Zero 
riscy 

32b 

Ariane 
+ARA 

64b 

AXI4 – Interconnect DMA GPIO 

APB – Peripheral Bus I2S UART 

Logarithmic interconnect SPI JTAG 
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Neurostream 
& NTX 

HWCrypt 
(crypto) 

PULPO 
(1st order opt) 

HWCE 
(convolution) 

R5 
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A 

Single Core 
• PULPino 
• PULPissimo 

Multi-core 
• Fulmine 
• Mr. Wolf 

Multi-cluster 
• Hero, Open Piton 

IOT HPC 

R5 
R5 

This is way too much for a university (or two)! 

OS HW 

Solderpad0.5 

51 

https://www.pulp-platform.org/           https://github.com/pulp-platform  

100s of users 

(academia + 

industry) 

https://www.pulp-platform.org/
https://www.pulp-platform.org/
https://www.pulp-platform.org/
https://www.pulp-platform.org/
https://github.com/pulp-platform
https://github.com/pulp-platform
https://github.com/pulp-platform
https://github.com/pulp-platform
https://github.com/pulp-platform
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 OpenHW Group is a not-for-profit, global organization (EU,NA,Asia) 
driven by its members and individual contributors where HW and SW 
designers collaborate in the development of open-source cores, related 
IP, tools and SW such as the CORE-V Family of cores.  

 OpenHW Group provides an infrastructure for hosting high quality 
open-source HW developments in line with industry best practices.  

 

52 

Academic Open-Source  Industrial Open source 

RI5CY, ARIANE 
Integrated Systems Laboratory 

Rick O’Connor (OpenHW CEO, former RISC-V foundation director)  
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OpenHW Group Ecosystem 

© OpenHW Group 
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OpenTitan 
More transparent, trustworthy, and secure RoT chip design 

OpenTitan is the first open source silicon project 

building a transparent, high-quality reference 

design for silicon root of trust (RoT) chips. 

Founding partners 

 

 

A Vertical, Application-focused Open-Platform Approach  
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Traditional RoT OpenTitan 

Softw are 

Silicon 

Integration 

Proprietary  Open 

Open HW enables a New Level of Openness in Security  

Transparent: 

Open implementation 

● Transparency at the bottom; 

lower than any existing RoT 

solutions 

● Transparency enables the 

community to proactively 

audit, evaluate, & improve 

the design 

● Engineering: reference 

firmware, register-transfer 

level (RTL), design 

verification (DV), and 

integration guidelines 
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Feel the momentum! 

Ibex RISC-V core, flash 

interface, communications ports, 

cryptography accelerators, and 

more.  

Vibrant repository 

Contributors 35+ 

1300+ 

GitHub Issues 

Contributions 
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Zero-Riscy Ibex 
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HPC Vertical: The European Processor Initiative 

 High Performance General Purpose 
Processor for HPC  

 High-performance RISC-V based 

accelerator 

 Computing platform for autonomous cars 

 Will also target the AI, Big Data and other 
markets in order to be economically 
sustainable 

Europe Needs its own Processors 

 Processors now control almost every aspect 
of our lives 

 Security (back doors etc.) 
 

 Possible future restrictions on exports to 

EU due to increasing protectionism  
 

 A competitive EU supply chain for HPC 
technologies will create jobs and growth in 
Europe 

 Sovereignty (data, economical, embargo) 
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General Purpose Processor (GPP) chip 

 7 nm, chip-let technology 

 ARM-SVE tiles 

 EPAC RISC-V vector+AI accelerator tiles 

 L1, L2, L3 cache subsystem + HBM + DDR 
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DDR DDR 

DDR DDR 

RISC-V Accelerator Demonstrator Test Chip 

 22 nm FDSOI 

 Only one RISC-V accelerator tile 

 On-chip L1, L2 + off-chip HBM + DDR PHY 

 Targets 128 DP GFLOPS (vector) 200+GOPs/W SP (STX)   
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First Generation EPI chips 

Scalar Core + STX units based on PULP! 

GPP power manager based on PULP! 
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http://pulp-platform.org 

The fun is 

just beginning 


