Will open source hardware solve your security issues?

Frank K. Gürkaynak, ETH Zürich

CS² - 7th Workshop on Cryptography and Security in Computing Systems, 20.01.2020 Bologna, ITALY

http://pulp-platform.org @pulp_platform

ETH Zürich
Will open source HW solve security issues?

NO

... but it can help
Seems like a short talk, what is on the menu?

- Who am I, what does the Parallel Ultra Low Power project do?
- How do we see security issues?
- How can open source HW and RISC-V help?
- What have we been doing in this field?
- A brief summary

Shameless plug for upcoming events
- Eurolab4HPC Industrial Session, tomorrow at 14:00
- FOSSistanbul, 13-15 March, Istanbul
I am part of the PULP project since 2013

- Luca wanted to work on **NEW** energy efficient architectures
 - Keywords were: parallel processing, near threshold operation, energy efficiency
 - **P**arallel **U**ltra **L**ow-**P**ower platform was born

- **Large group of 60 people** in ETH Zurich and University of Bologna
 - Working on technology, IC design, architecture, programming, and applications.

- **Experienced in ASIC design. We have 37 PULP ASICs** taped out
 - Recent chips in 22nm, 40nm and 65nm
 - See the complete list at http://asic.ethz.ch
Who is behind PULP?

Prof. Luca Benini

In total about 60 people work on projects related to PULP in Zurich and Bologna

https://pulp-platform.org/team.html

- Chief Architect in STMicroelectronics (2009-2012)

Frank

Davide Rossi

ETH Zürich

Leading Swiss Technical University

Consistently ranks in the top 20 of the world

21'400 students

21 Nobel prizes

University of Bologna

Founded in 1088, oldest university in the world

More than 85'000 students

One of the top ranked Universities in Italy and Europe
Our ASICs have different use cases

- Chips characterized on an IC tester *(Poseidon 22nm)*
- Research demonstrators *(Nano drone with Mr. Wolf)*
- Industrial uses of our cores/peripherals *(open-isa.org Vega board)*
PULP has released a large number of IPs

RISC-V Cores
- RI5CY: 32b
- Ibex: 32b
- Snitch: 32b
- Ariane: 64b

Platforms
- Single Core: PULPino, PULPissimo
- Multi-core: Fulmine, Mr. Wolf
- Multi-cluster: Hero, Open Piton

Peripherals
- JTAG
- SPI
- UART
- I2S
- DMA
- GPIO

Interconnect
- Logarithmic interconnect
- APB – Peripheral Bus
- AXI4 – Interconnect

Accelerators
- HWCE (convolution)
- Neurostream (ML)
- HWCrypt (crypto)
- PULPO (1st order opt)
Committed to open source from day one

- Our goal was to release everything (we could) as open source
 - There are still discussions on what can be released (HDL source, scripts, netlist, GDS)
 - PULP has been using a permissive Solderpad license since the beginning

- Our first open source release was in February 2016 (PULPino)
 - Very simple microcontroller using a single 32-bit RISC-V core (RI5CY)

- As of now (start of 2020) we have released:
 - Single core platforms: PULPino, PULPissimo
 - Cluster-based multi-core platforms: OpenPULP, HERO, Open Piton + Ariane
 - And a range of RISC-V cores, peripherals, accelerators and interconnect solutions
Open HW for security and safety is popular

- The PULP project is a very good platform for collaboration
 - It is open source, has been silicon proven and can be used for quite powerful systems
 - We have many discussions with project partners about possible projects

- More than half of the project ideas we discuss are on
 - Securing processors against side-channel attacks
 - Implementing systems with improved safety and reliability

- Based on this experience:
 - Allow me to make some comments on the pros and cons of OpenHW in security
Securing systems is a **VERTICAL** problem

<table>
<thead>
<tr>
<th>Abstraction Layer</th>
<th>Example</th>
<th>Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>E-Voting service</td>
<td>Legal challenges</td>
</tr>
<tr>
<td>Users</td>
<td>Voters</td>
<td>Social engineering</td>
</tr>
<tr>
<td>Application</td>
<td>Swiss Post E-vote</td>
<td>Bugs / backdoors in SW</td>
</tr>
<tr>
<td>Algorithms / libraries</td>
<td>RSA / openSSL</td>
<td>Weaknesses in Algorithms</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>seL4</td>
<td>Privilege elevation</td>
</tr>
<tr>
<td>Architecture</td>
<td>NXP - i.MX RT1170</td>
<td>Memory/cache organization</td>
</tr>
<tr>
<td>Microarchitecture</td>
<td>NXP - i.MX RT1170</td>
<td>Attacks on control flow</td>
</tr>
<tr>
<td>Digital Electronics</td>
<td>Adders, gates, MOS</td>
<td>Side channel leakage</td>
</tr>
<tr>
<td>Physics</td>
<td>Electrons, Quantum states</td>
<td>Environment</td>
</tr>
</tbody>
</table>

Security issues at **ALL** Levels

Open Source HW
Solutions are needed at MULTIPLE levels

- Hardware is **only one part** of the system
 - In some cases security problems are caused by multiple levels interacting with each other

- **Open source hardware can help provide solutions**
 - Many application / libraries / operating system solutions rely on open source software
 - Open source hardware broadens the scope of what can be done
 - But it can not solve all the issues alone

- **It is important to understand what it can and can not deliver**
 - We have seen that people have unrealistic expectations from open source hardware
 When these are inevitably not met, open source HW gets unfairly criticized in the end
How can open source HW help?

- Know what is really inside
- More and independent verification of blocks
- Be able to experiment without constraints
- Share the information freely
- Fairer benchmarking

- After all: Open source SW has proven useful why should open source HW be different?
Knowing how things exactly work is vital

- From the “ZombieLoad” paper

 From section 3.2, emphasis added for this presentation

 “While we identified some necessary building blocks to observe the leakage (cf. Section 5), we can only provide a hypothesis on why the interaction of the building blocks leads to the observed leakage. As we could only observe data leakage on Intel CPUs, we assume that this is indeed an implementation issue (such as Meltdown) and not an issue with the underlying design (as with Spectre).”

- Closed implementations hide/abstract many secrets from users

 - Being able to see inside and run experiments are vital for safety and security experts

It is not that cores from XYZ are insecure

- Most commercial processors have well thought out solutions
 - In most likelihood better than anything we have in open source hardware

- But a security researcher does not always have access
 - Work and insights can not be shared freely between researchers
 - Experimenting (an important part of research) is limited, you work with what is given
 - Results and changes can not be verified independently

- This is where open source hardware can help the most
Enter RISC-V to the rescue

- RISC-V Foundation established in 2015
 - ETH Zürich is a founding member
 - More than 275 members

- ISA is essentially a document
 - Defines 32/64/128 bit architectures
 - What are the instructions, what effect do they have

- ISA divided into several extensions
 - Working groups decide and work on the definitions
 - Several are ratified, work continues on others

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Integer</td>
</tr>
<tr>
<td>E</td>
<td>Integer with 16 registers</td>
</tr>
<tr>
<td>C</td>
<td>Compressed Instructions</td>
</tr>
<tr>
<td>M</td>
<td>Multiplication</td>
</tr>
<tr>
<td>F</td>
<td>IEEE 32b floating point</td>
</tr>
<tr>
<td>D</td>
<td>IEEE 64b floating point</td>
</tr>
<tr>
<td>Q</td>
<td>IEEE 128b floating point</td>
</tr>
<tr>
<td>A</td>
<td>Atomic instructions</td>
</tr>
<tr>
<td>V</td>
<td>Vector extensions</td>
</tr>
<tr>
<td>P</td>
<td>Packed SIMD extensions</td>
</tr>
<tr>
<td>B</td>
<td>Bit manipulation</td>
</tr>
</tbody>
</table>

... and more
RISC-V foundation only defines the ISA

- The ISA is free, implementations can be done by anyone
 - ETH Zürich specializes in efficient SystemVerilog based open source implementations
 - RI5CY: 32bit Micro-processor with DSP extensions (will be part of OpenHW Core-V)
 - Ibex: 32bit minimal processor (maintained by LowRISC)
 - Ariane: 64 bit Linux capable core (will be part of OpenHW Core-V)
 - There are many others (SiFive, Codasip, Andes, WesternDigital, IIT-Madras,.. and more)
 - Implementations can also be commercial, it is only the ISA that is open

- The foundation is working on a set of compliance tools
 - Only foundation members are allowed to officially call their implementations RISC-V
What is so special about RISC-V

- It is **FREE**
 - Everybody can build, sell, and make RISC-V cores available

- It is a modern design, no historical baggage
 - Some of the more common ISAs (ARM, Intel..) have been around for 20+ years
 Newer implementations, still need to be compatible to older designs.
 - RISC-V benefited from the mistakes made by others, cleaner design
 - Major design decisions have been properly motivated and explained

- Reserved space for extensions, modular

- **Open standard**, you can help decide how it is developed
The FREEDOM in RISC-V is implementation

- You can access all ISAs without (many) restrictions
 - SW tools need to be developed so that they can generate code for that ISA

- But most ISAs are closed. Only specific vendors can implement it
 - If you want to use a core that implements an ISA, you have to license/buy it from vendor
 - So open source SW (for the ISA) is possible (i.e. compilers) but building HW is not allowed
Are RISC-V processors better than XYZ?

- Actual performance depends on the implementation
 - RISC-V does not specify implementation details (on purpose)
- It is a modern design, should deliver comparable performance
 - If implemented well, it should perform as good as other modern ISA implementations
 - In our (ETH Zürich) experiments, we see no weaknesses when compared to other ISAs
 - It also is not magically 2x better
- High-end processor performance is not much about ISA
 - Implementation details like technology capabilities, memory hierarchy, pipelining, and power management are more important.
Our contributions to security research

- **Before PULP**
 - Efficient implementations of Cryptographic Hardware
 - Contributions to public evaluations AES, e-stream, SHA3, Caesar
 - Practical attacks and countermeasures against DPA

- **After PULP**
 - Acceleration of Cryptographic functions in SoCs
 - Control flow integrity
 - Side-channel resilience
 - Securing covert channels to prevent information leakage
Accelerating cryptographic functions

- **Key challenge: I/O bandwidth**
 - Not so difficult to design fast crypto HW
 - Need to match the rest of the system
 - Bandwidth to memory/bus the issue

- **Fulmine (UMC65)**
 - 2 TCDM ports 64bits/cycle
 - AES unit (2 rounds/cycle)
 - 0.38 cpb (8 kByte block); Intel Xeon AES-NI 1.18 cpb
 - @0.8V and 84 MHz, 1.76 Gbit/s, 120 pJ per byte (chip)
 - Also SHA3 unit and other accelerators

Leakage resilient cryptography

- **Reduce Attack surface**
 - A new key (K^*) is generated per data block

- **Encryption example (2PRG)**
 - E function is AES
 - g finite field multiplication with 1^{st} order masking
 - Max throughput 5.29 Gbit/s @ 256 MHz
 - Needs 2x Block ciphers for same throughput

- **Strong side channel resilience** within IoT Power budget
 - Implemented and tested in **Fulmine** (last slide)

Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank Gürkaynak, Michael Muehleberhuber, Luca Benini, “High-Speed ASIC Implementations of Leakage-Resilient Cryptography”, DATE 2018
Other tricks against side channel security

- Power by far the most common side-channel attack for CMOS
- Basic approaches to protection:
 - Add noise to make measurements difficult
 - Implement masking/sharing techniques to de-correlate secrets from input data
 - Change the way the operation is organized randomly (polymorphism)
 - Use digital logic with circuit styles that have (less) data dependent consumption
Attacks against the control flow

- Can be realized in both HW and SW
 - A successful attack on a processor changes the order of executed instructions
 - Can be used to execute malicious code or jump over security checks

- **HW attacks can be realized by controlling environment**
 - Clock or voltage glitches
 - Injecting electromagnetic pulses

- **Small IoT devices more vulnerable**
 - They operate in potentially hostile environment
 - Have less resources to withstand attacks from a capable adversary
Sponge based CFI

- **Sponge based construction to decrypt instructions**
 - AEE Light with 32 bit `state` and 32 bit capacity in APE mode
 - Used **Prince** for permutation allowing single cycle execution

- **Attacker has to change instructions and state at the same time**
Patronus: RISC-V system with CFI

- Additional pipeline stage in Ibex for decryption
 - LLVM based compilation flow
- Only 25-35% power/area overhead
- **Additional instructions** for branches added as instruction set extensions
- About 10% runtime overhead due to patches and additional commands
- Probability of **illegal instruction trap** when instruction altered
 - 91.51% within 1 cycle
 - 99.19% within 2 cycles
 - **99.95%** within 3 cycles

Mario Werner, Thomas Unterluggauer, David Schaffenrath, Stefan Mangard, “Sponge-Based Control-Flow Protection for IoT devices”, 2018 IEEE European Symposium on Security and Privacy
Securing covert channels

- Several attacks are based on passing information between tasks

![Diagram showing victim task, covert channel, and spying task]

- Covert channels are used to pass information between tasks
 - Most channels are based on state of hardware that is retained between task switches
 - Branch prediction history, caches, reorder buffers

- Attacks can be mitigated by 'securing' covert channels
Evaluation

- Master thesis by Nils Wistoff
 - Perform attacks running on RISC-V cores
 - Investigate and evaluate efficient mitigation mechanisms

- Simple processor not enough
 - Most covert channels are due to performance optimizations in high performance processors
 - Ariane (6 stage, in-order 64bit RISC-V)

- Working seL4 port on Ariane
How open source helped us in our projects

- Start from a working system, **no need to reinvent** everything
 - Our 32bit microcontrollers are quite mature, Ariane runs Linux and Sel4

- **Easy to extend** with accelerators and custom blocks/memories
 - Platforms designed for heterogeneous acceleration (PULPissimo, OpenPULP, HERO)

- **Not limited** by previous design choices
 - Do you want to have 2 additional bits for your registers, drop instructions, add new ones?

- **Full source code** allows you to observe/record everything
 - Not limited to which performance counters, timers are available, build add/your own

- Possible to **exploit** the results **commercially**
Not everything is perfect, still work to do

- Modern attacks exploit features of high performance processors
 - Current open source offerings not at the same level of high-end commercial processors
 - At the moment, no out of order, multi-issue, SMP systems within PULP ecosystem
 - Designing such cores is not really our research goal

- Standards of RISC-V will continue to evolve (slowly..)
 - Standards are discussed openly, this takes time, specifications evolve before being ratified

- Providing support to all users is not our strength
 - We try our best, but our main workforce are Ph.D. students that need to do research
 - Get community involved in supporting what we have released so far... and...
Open Titan project

- Open source Root of Trust project led by LowRISC

 “OpenTitan is the first open source project building a transparent, high-quality reference design and integration guidelines for silicon root of trust (RoT) chips”

- Many partners involved

- ETH Zurich has contributed their 32bit RISC-V core (Ibex)
OpenHW Group is a not-for-profit, global organization driven by its members and individual contributors where HW and SW designers collaborate in the development of open-source cores, related IP, tools and SW such as the CORE-V Family of cores.

- OpenHW will take over and support our RI5CY and Ariane cores
 - Better verification, documentation, user support
- Visit their booth outside to learn more
Open HW group members
Open source HW is a great tool for security

- **Investigate, observe, change and share**
 - Great toolbox to test and validate ideas, develop new concepts

- **Platforms with good maturity (and great price/performance)**
 - Huge effort by industry supported non-profits to getting additional manpower to make it even better underway

- **Permissive licensing does not put burdens on commercialization**

- **Access our releases through GitHub**

 ![GitHub](https://github.com/pulp_platform)
Eurolab4HPC Industrial Session: Tue 14:00

In this session our goal is to bring together major supporters of open source hardware projects within the industry and discuss what role Open Source Hardware will play in industrial applications in the coming years.

- Calista Redmond (CEO, RISC-V)
- Rick O’Connor (President, OpenHW group)
- Ted Marena (Director, Chips Alliance)
- Dominic Rizzo (Google, Open Titan, LowRISC)
- John Davis (BSC, EPI)
- Christian Fabre (CEA)
FOSSistanbul will bring together, enthusiasts, members of industry and academia that are working on open source hardware design, in a lively and attractive city.

With keynotes by: Luca Benini, Nele Mentens, Onur Mutlu

Register for **FREE**

https://fossi-foundation.org/fossistanbul/
QUESTIONS?

@pulp_platform
http://pulp-platform.org