

PULP Software Development Kit and Tools

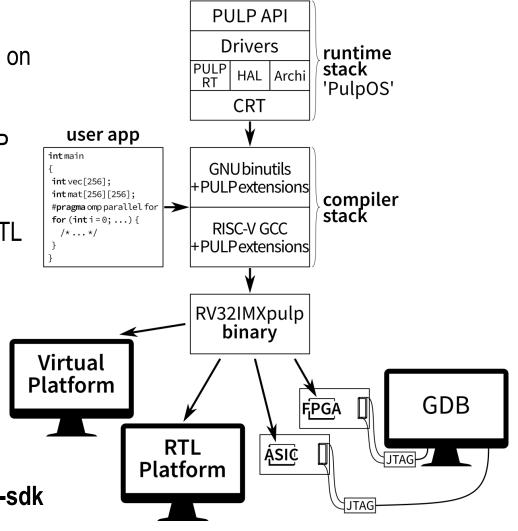
Compiler, Virtual Platform, PulpOS

21.01.2019

Germain Haugou

Andreas Kurth

and the PULP team led by Prof. Luca Benini



¹Department of Electrical, Electronic and Information Engineering

PULP Software Development Kit (SDK)

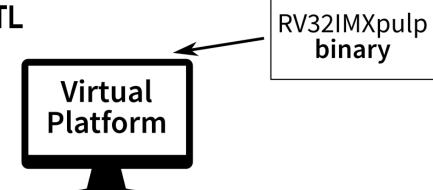
- Package for compiling, running, debugging and profiling applications on **PULP** platforms
- Supports all recent and upcoming PULP chips: Mr.Wolf, GAP, Vega, ...
- Supports all targets: Virtual Platform, RTL platform, FPGA, dev boards
- RISC-V GCC with support for PULP extensions
- Basic OpenMP support
- **Open-source**, available at https://github.com/pulp-platform/pulp-sdk

Compiler

- Forked GCC 7.1
- Extended with all PULP custom instructions
- Some custom instructions instantiated by GCC (e.g. bit manipulation instructions, autovectorization), others available through builtins
- CoreMark 3.1 with RI5CY v2
- Extended binutils for **full GDB** support of all custom instructions

GNU binutils +PULPextensions

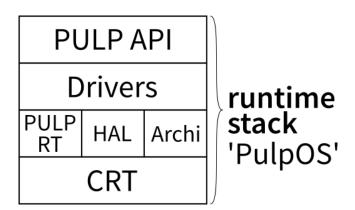
RISC-V GCC +PULPextensions compiler stack



Virtual Platform: Features

100% functional equivalence to RTL (or supposed to)

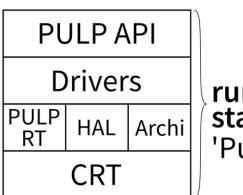
- **Performance estimation** (20% error margin)
- Frequency scaling
- Power on/off
- **Power consumption estimation**
- **Architecture traces**
- **VCD** traces
- Peripheral models (camera, ADC, microphone, etc)
- **GDB** connection



Runtime / OS

PulpOS

- Provides a simple OS for quick prototyping
- Supports all PULP variants, with or without fabric controller (FC) and multiple clusters
- Used for full applications including drivers, as well as basic tests
- All APIs are asynchronous to support small reactive applications


Zephyr

- Just starting now
- Plan is to port the kernel to PULP platforms, create new API for managing the cluster and port Zephyr drivers (SPI, etc)

PulpOS

- **Features**
 - **Multi-threading**: to get different priorities
 - Event scheduler: one per thread, to schedule runto-completion tasks (all APIs are asynchronous)
 - **Memory allocators**: for all PULP memory levels (L2, L1)
 - **Cluster management**: cluster mount/unmount, remote cluster call, FC remote services for cluster
 - Power management: frequency scaling, deep sleep, voltage scaling
 - Drivers: SPI, I2S, I2C, CPI, etc.
 - **Cluster execution:** team fork / barriers / critical sections, DMA transfers

runtime stack 'PulpOS'

PULP SDK: Getting Started

git clone \
https://github.com/pulp-platform/pulp-sdk

Check README.md for prerequisites and install them.

Source the configuration file of your target platform.

make all

Questions?

www.pulp-platform.org

@pulp_platform

Florian Zaruba², Davide Rossi¹, Antonio Pullini², Francesco Conti¹, Michael Gautschi², Frank K. Gürkaynak², Florian Glaser², Stefan Mach², Giovanni Rovere², Igor Loi¹ Davide Schiavone², Germain Haugou², Manuele Rusci¹, Alessandro Capotondi¹, Giuseppe Tagliavini¹, Daniele Palossi², Andrea Marongiu^{1,2}, Fabio Montagna¹, Simone Benatti¹, Eric Flamand², Fabian Schuiki², Andreas Kurth², Luca Benini^{1,2}

¹Department of Electrical, Electronic and Information Engineering

ETH zürich ²Integrated Systems Laboratory