

@pulp platform

youtube.com/pulp platform

pulp-platform.org 📲

Shaheen: An Open, Secure, and Scalable RV64 SoC for Autonomous Nano-UAVs

University of Bologna

L. Valente, A. Veeran, M. Sinigaglia, Y. Tortorella, A. Nadalini, N. Wistoff, B. Sá, A. Garofalo, R. Psiakis, M. Tolba, A. Kulmala, N. Limaye, O. Sinanoglu, S. Pinto, D. Palossi, L. Benini, B. Mohammad, D. Rossi

luca.valente@unibo.it

PULP Platform

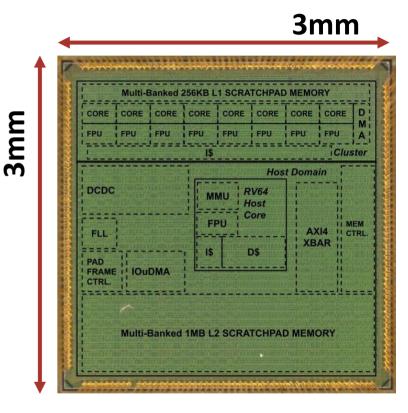
Open Source Hardware, the way it should be!

Autonomous Nano-UAVs

- Versatility, safety, and cost-effet:
 - small and agile

università di bologna ETHzürich 💥

- ideal for accessing hard-to-reach areas or tight spaces (inspection/maintenance)
- relatively inexpensive to produce and operate
- Requirements for future generation of nano-UAVs:
 - Run increasingly complex <u>multi-tasking</u> workloads with <u>large memory footprint</u>
 - Within a few hundred mW power budget
 - Support for virtualization and secure operations in uncontrolled/hostile scenarios



Shaheen: an Open, Secure, and Scalable RV64 SoC for Autonomous Nano-UAVs

• 9mm² SoC in 22nm FDSOI technology with:

- A RV64 Linux-capable CPU enhanced with
 - Hypervisor support
 - Timing-channels mitigation
- An energy efficient programmable multi-core accelerator (PMCA) based on 8 RV32 cores with ML and DSP extensions
- Up to 512MB of low-power off-chip main memory
- Logic locking on key IPs within the architecture
- 200mW power envelope

Let's dive in!

RV64 and custom RV32: the best of both worlds

10 cn

🥐 NYU ABU DHABI

- Different cores serve different parts of the target application
- Host:
 - On top of the hypervisor:
 - Attitude control (RTOS-based)
 - Linux-based legacy software such as wireless network stack.
- PMCA:
 - The PMCA runs the CNN-based pose estimation task [1] fed by a low-resolution front-looking camera.

[1] Cereda et.al. "Deep Neural Network Architecture Search for Accurate Visual Pose Estimation aboard Nano-UAVs", arXiV

Linux-based wireless

communcation

Shaheen SoC

RTOS-based ctrl 📣

Host: Attitude ctrl &

Low-level

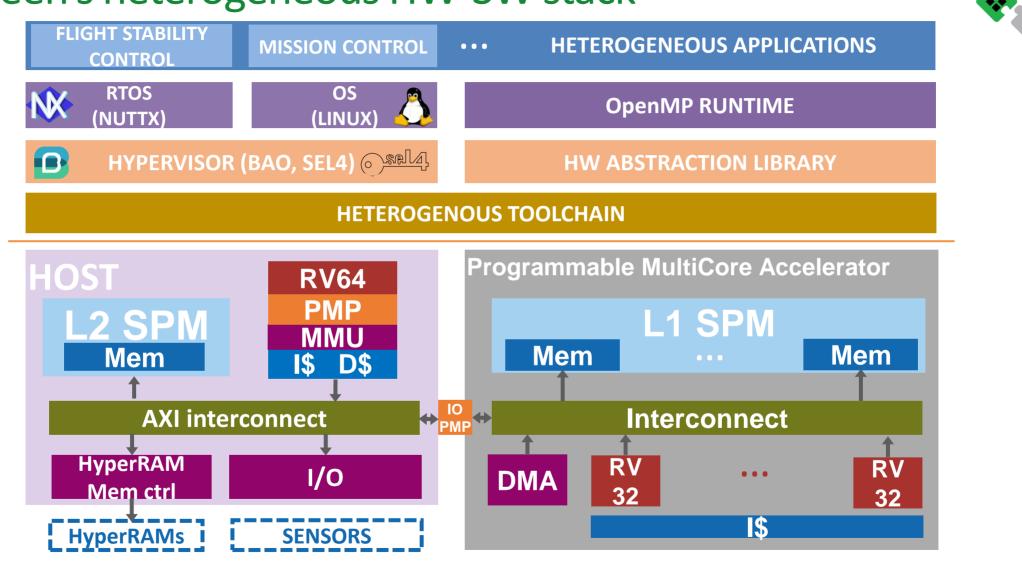
Cluster: Human pose estimation

MobileNetV1 @ 226 frame/s

PULP-Frontnet @ 138 frame/s

State

estimation


Network stack

Actuators

Camera frame

160×96

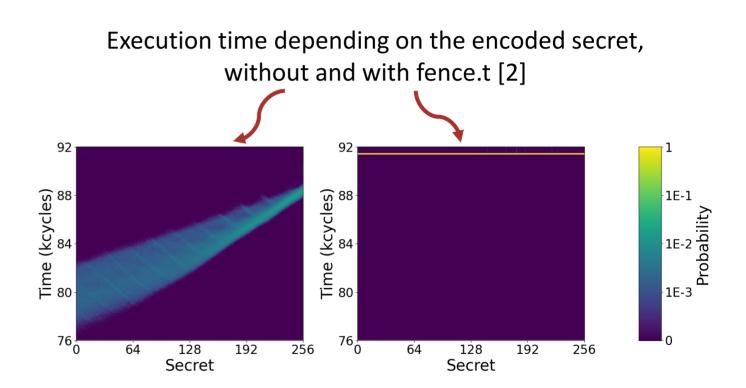
Shaheen's heterogeneous HW-SW stack

Timing-channel mitigation

• The 64-bit core implements the temporal fence instruction "fence.t"[2]:

- capability of clearing vulnerable microarchitectural states
- enables a history-independent context-switch latency
- low implementation effort (<1%)
- low performance impact
- negligible hardware costs

[2] Wistoff et. al. "Systematic Prevention of On-Core Timing Channels by Full Temporal Partitioning", IEEE Transactions on Computers, 2022

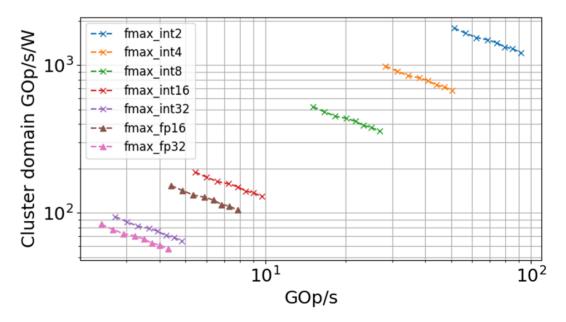


Timing-channel mitigation: prime and probe attacks

• Prime and probe attacks:

- The spy brings the target HW into a known state (*prime*)
- The OS switches to an applications containing a Trojan, accessing a subset of the HW resources to encode a secret
- The execution switches back to the spy, which *probes* the execution time, correlated with the encoded secret.

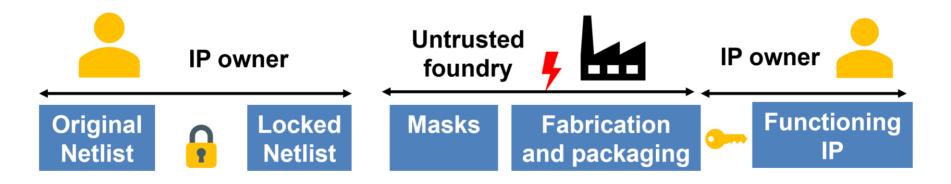
università di bologna ETH zürich 💥



Physical implementation details: performance

- Overview:
 - 1MB+256kB of scratchpad memory
 - 200mW (120mW Host domain+ 80mW PMCA)
 - RV-32 cluster's cores aggressively optimized for FP-DSP and integer QNN inference [3]
 - The cluster can deliver up to:
 - 7.9GFLOp/s on 16-bit FP data
 - up to 90GOp/s on 2-bit integer data @1.2TOPs/s/W (<u>high-throughput</u> mode)
 - up to 50GOp/s on 2-bit integer data @1.8TOPs/s/W (energy-efficient mode)

L2 mem., L1 mem (SRAM)	1MiB, 256KiB
Off-chip CPU mem. (HyperRAM)	8MiB - 512MiB
VDD Range	0.625-0.8V
Cluster Max Freq., CVA6 Max. Freq.	500MHz, 600MHz
Power Envelope	200mW


[3] Nadalini et.al. "A 3 TOPS/W RISC-V Parallel Cluster for Inference of Fine-Grain Mixed-Precision Quantized Neural Networks", ArXiv, 2023

Physical implementation details: logic locking

- Logic Locking:
- Consists in modifying a hardware IP to add a new input (*"logic locking key"*) to be applied to unlock the original IP functionality. Without the proper logic locking key, the chip is non-functional [4].
- Between the interconnect and the memory controller
- Between the interconnect and the PMCA

[4] Limaye et.al."Thwarting all logic locking attacks: Dishonest oracle with truly random logic lockin" IEEE TCAS, 2020

Advancing the SoA

Overview:

- Match best in class (AI-IoT) SW performance
- Only SoC for autonomous UAVs (within 200mW) with Hypervisor+Linux support •
- Advanced security features

	STM32-H7[5]	STM32-F4[6]	GAP8[7]	Vega[8]	Kraken[9]	Shaheen
Target board	Pixhawk	Crazyflie	AIDeck	AIDeck	AIDeck	AlDeck / Pixhawk
Technology	40nm	90nm	55nm	22nm FDSOI	22nm FDSOI	22nm FDSOI
Die Size	-	-	10mm2	12mm2	9mm2	9mm2
CPU	Cortex M7	Cortex M4	9x RI5CY	10x RI5CY-NN	9x RI5CY-XNN	CVA6 + 8x FLEX-V
Supported OS	RTOS	RTOS	RTOS	RTOS	RTOS	Linux/RTOS/Hypervisor
Host-compute FP support	SP-FPU, DP-FPU	-	-	SP-FPU	SP-FPU	SP-FPU, DP-FPU
Security Features	Crypto/hash accelerators	-	-	-	-	Side-channel protection, Logic Locking, IOPMP
Peak SW Performance	240MFOp/s(FP32) 390MOp/s (8b)	72MOp/s (8b)	6 GOp/s (8b)	7GFOp/s(FP16) 15,6GOp/s(8b)	3,12GFLOPs(FP32) 85GOp/s(2b)	7.9GFOp/s(FP16) 90 GOp/s(2b)

[5] https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html [6] https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html [7] https://greenwaves-technologies.com/low-power-processor/ [8] Rossi et al "Vega: A Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up From MRAM-Based State-Retentive Sleep Mode", IEEE JSSC, 2021 [9] Di Mauro et al "Kraken: A Direct Event/Frame-Based Multi-sensor Fusion SoC for Ultra-Efficient Visual Processing in Nano-UAVs", HotChips 34, 2022

PULP Platform Open Source Hardware, the way it should be!

Luca Valente <u>luca.valente@unibo.it</u>

Institut für Integrierte Systeme – ETH Zürich Gloriastrasse 35 Zürich, Switzerland

DEI – Universitá di Bologna Viale del Risorgimento 2 Bologna, Italy

ETHZÜRICH 🛞 ONIVERSITER ST VOIOGUM

Q&A

@pulp_platform 🎔

youtube.com/pulp_platform