## Shaheen: An Open, Secure, and

## Scalable RV64 SoC for Autonomous Nano-UAVs



- Versatility & safety: nano drones are small and agile, making them ideal for accessing hard-to-reach areas or tight spaces and performing inspection & maintenance.
- Cost-effectiveness: nano drones are relatively inexpensive to produce and operate.





 Software stack and energy efficiency: as they evolve from research prototypes to products, their flight computers need to: (i) run increasingly complex <u>multi-tasking</u> <u>workloads with large memory footprints</u> within a <u>few</u> <u>hundred mW power budget</u>; (ii) support <u>virtualization and</u> <u>secure operation</u> in uncontrolled or even hostile deployment scenarios.

Shaheen addresses these challenges, ensuring *Performance* while maintaining *Energy Efficiency* and providing *advanced virtualization support*. The design incorporates an *energy-efficient Programmable Multi-Core Accelerator* for neural network inference and a Host Subsystem based on *CVA6*, a 64-bit Linux Capable CPU, enhanced with *Hypervisor support* and a lightweight mechanism *for timing-channels mitigation* to isolate concurrent execution of multiple software stacks (trusted and untrusted), preventing security threats and ensuring multi-domain operations.

## **HW-SW** stack & Application scenario:





- HW-SW stack: The Host core is, to the best of our knowledge, the first silicon implementation fully compliant with the ratified RISC-V ISA hypervisor extension, ensuring multi-domain operations.
- Application scenario: the Host processor fuses sensor data to implement real-time attitude control and runs Linux-based legacy software such as wireless network stack. The PMCA runs the CNN-based pose estimation task fed by a low-resolution front-looking camera.



## Physical implementation details:

| L2 mem., L1 mem (SRAM)             | 1MiB, 256KiB   |
|------------------------------------|----------------|
| Off-chip CPU mem. (HyperRAM)       | 8MiB - 512MiB  |
| VDD Range                          | 0.625-0.8V     |
| Cluster Max Freq., CVA6 Max. Freq. | 500MHz, 600MHz |
| Power Envelope                     | 200mW          |

IP owner

Original Netlist

Locked Netlist

Wasks

Fabrication and packaging

Functioning IP

- Memory hierarchy: Nano-UAVs' State-of-the-Art (SoA) SoCs rely on 32-bit processors, small on-chip SPMs and off-chip memories accessible through peripheral interfaces. Instead, Shaheen's memory hierarchy features a 1MB SPM and an ultra-low-power, low-area, low-pin-count, fully-digital HyperRAM memory controller that can drive up to 512MB @1.6Gbps directly on the AXI-4 bus.
- PMCA energy-efficiency: The PMCA is built around 8 Ri5cy (RV32) cores sharing 16 16kB SRAM banks. The cores feature dedicated RV32 extension, including hardware loops, post-increment LD/ST, unified MAC&Load operation, narrow bit-width, and mixed-precision SIMD extensions (down to 2-bit) relevant for inference of quantized neural networks. The PMCA's cores also feature FPUs supporting FP32, SIMD FP16, and bfloat.

10<sup>3</sup> -\*- fmax\_int4 -\*- fmax\_int8 -\*- fmax\_int32 -\*- fmax\_fp16 -\*- fmax\_fp32 -\*- fmax\_

• Logic Locking: Shaheen integrates logic locking, which consists in modifying a hardware IP to add a new input, specifically a logic locking key, to be applied to unlock the original IP functionality. Without the proper logic locking key loaded, the chip is non-functional.

|                         | STM32-H7                         | STM32-F4     | GAP8         | Vega                           | Kraken                          | Shaheen                                          |
|-------------------------|----------------------------------|--------------|--------------|--------------------------------|---------------------------------|--------------------------------------------------|
| Target board            | Pixhawk                          | Crazyflie    | AlDeck       | AlDeck                         | AlDeck                          | AIDeck / Pixhawk                                 |
| Technology              | 40nm                             | 90nm         | 55nm         | 22nm FDSOI                     | 22nm FDSOI                      | 22nm FDSOI                                       |
| Die Size                | -                                | -            | 10mm2        | 12mm2                          | 9mm2                            | 9mm2                                             |
| CPU                     | Cortex M7                        | Cortex M4    | 9x RI5CY     | 10x RI5CY-NN                   | 9x RI5CY-XNN                    | CVA6 + 8x FLEX-V                                 |
| Supported OS            | RTOS                             | RTOS         | RTOS         | RTOS                           | RTOS                            | Linux/RTOS/Hypervisor                            |
| Host-compute FP support | SP-FPU, DP-FPU                   | -            | -            | SP-FPU                         | SP-FPU                          | SP-FPU, DP-FPU                                   |
| Security Features       | Crypto/hash<br>accelerators      | -            | -            | _                              | _                               | Side-channel protection,<br>Logic Locking, IOPMP |
| Peak SW<br>Performance  | 240MFOp/s(FP32)<br>390MOp/s (8b) | 72MOp/s (8b) | 6 GOp/s (8b) | 7GFOp/s(FP16)<br>15,6GOp/s(8b) | 3,12GFLOPs(FP32)<br>85GOp/s(2b) | 7.9GFOp/s(FP16)<br>90 GOp/s(2b)                  |

















L. Valente, A. Veeran, M. Sinigaglia, Y. Tortorella, A. Nadalini, N. Wistoff, B. Sá, A. Garofalo, R. Psiakis, M. Tolba, A. Kulmala, N. Limaye, O. Sinanoglu, S. Pinto, D. Palossi, L. Benini, B. Mohammad, D. Rossi

Luca Valente (luca.valente@unibo.it>