

34 mm² End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS

Authors: Phillippe Sauter¹, Thomas Benz¹, Paul Scheffler¹, Martin Povišer, Frank K. Gürkaynak¹, Luca Benini^{1,2} ¹ETH Zurich ²University of Bologna

phsauter@iis.ee.ethz.ch

Motivation

Open-source as enabler

- Academia: NDA-free collaboration on designs and tools
- Education: Widely accessible hands-on chip design
- Industry: Zero-trust verification, license-free deployment

Explore feasibility for larger Linux-capable SoCs

- Previously: OS EDA tools used for tapeout of small designs
- Now: 4.8× larger than largest previously published design
- Novelty: Significant improvements in QoR and performance of open-source EDA tools and flow

End-to-End Open-Source EDA flow

New Frontend

Synthesis

RTL written by PULP (Cheshire, AXI, ...), OpenTitan (SPI, I2C) and OpenHW (CVA6 core)

Supports industry-grade SystemVerilog

Improved Yosys synthesis

- Lazy man's synthesis for high effort optimization
- Improved bit-select operator to multiplexer mapping
- Optimized critical multiply-add implementation
- Improved timing (2.3×), area (1.6×) and runtime (2.5×) vs reference open-source flow
- 51 logic level critical path: Competitive with 46 LL in previous commercial implementations

Tuned backend: -12% die area vs open reference flow

- Based on OpenROAD-flow-scripts flow
- Flow and Hyperparameters tuned to design
 - Strength of routing driven placement
 - Per-layer routing resource reduction
 - Per-module density reduction via cell padding

pulp-platform.org

pulp-platform

W@pulp_platform

Our Design

- 4-way 16KiB L1I and L1D
- 64KiB LLC/Scratchpad
- Hyperbus DRAM (124MB/s)

HyperRAM

Controller

2.7MGE design

Basilisk

Chip

Silicon Testing on Demo Board

USB

Host

Cheshire SoC

INTC -

UART

QSPI

I2C

GPIO <

- PCB designed in open-source PCB EDA **KiCAD**
- Autonomous boot selection
- Open-source framework to orchestrate stimuli application and measurement
- On-board configurable clock
- All peripherals (VGA, USB...)

Test: 48x48 FP64 GEMM

- **62 MHz** at nominal **1.2V** matching OpenROAD timing analysis
- 102 MHz peak frequency (1.64V)
- Peak efficiency of **18.9 MFLOP/s/W**

work in a Linux environment 1.64 1.54 -€1.44 - 15.0 🔆 ත<u>්</u> 1.34 -분 1.24 -1.14 - 10.0 👱 <u></u> 0 1.04 -16 28 40 52 64 76 88 100 Frequency (MHz)

Conclusion

- First end-to-end permissive, free and open-source Linux-capable SoC with an application-class core and rich peripherals
- Newly developed Yosys-Slang enables synthesis of complex, industry-grade SystemVerilog RTL
- Reproducible and sharable high-quality designs for collaboration and research

Editing GDS

