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Autonomous Systems: Roadmap
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[SCR23]

On-car Computing 
PMAX < 1.5 kW

Efficient



Embodied AI
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On-car Computing 
PMAX < 1.5 kW

Efficient

[AMD HotChips24]

Model complexity
10× every ~2.5 years

Moore’s Law
10x every 12 years!



Autonomous Nano-Drones
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27cm

23cm

A. Bachrach, “Skydio autonomy engine: Enabling the next generation of 
autonomous flight,” IEEE Hot Chips 33 Symposium (HCS), 2021

• 3D Mapping & Motion Planning 
• Object recognition & Avoidance
• 0.06m2 & 800g of weight
• Battery Capacity 5410 mAh

Advanced autonomous drone

https://www.skydio.com/skydio-2-plus https://www.bitcraze.io/products/crazyflie-2-1

• Smaller form factor of 0.008m2

• Weight:  27 g (30× lighter)
• Battery capacity: 250 mAh (20× smaller)

Nano-drone

9.2cm
9.2cm

Intelligence in a 30× smaller payload, 20× lower energy budget?



Achieving True Autonomy on Nano-UAVs 
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Multiple, 
 complex, 
  heterogeneous

tasks at high speed and robustness 
fully on board

Obstacle avoidance & Navigation
Environment exploration

Object detection

Multi-GOPS  workload at extreme efficiency  → Pmax 100mW



Efficiency through Heterogeneity: Multi-Specialization
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Multi-sensor
frame-based
event-based

Perception
Fusion 

Reasoning 

Brain-inspired: Multiple areas, different structure different function!



Kraken: 22nm SoC, Multiple Heterogeneous Accelerators
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• RISC-V Cluster 

8 Compute cores +1 DMA core 

• CUTIE 

Dense ternary-neural-network 

accelerator

• SNE 

Energy-proportional spiking-

neural-network accelerator

Technology 22 nm FDSOI

Chip Area 9 mm2

SRAM SoC 1 MiB

SRAM Cluster 128 KiB

VDD range 0.55 V - 0.8 V

Cluster Freq ~370 MHz

SNE Freq ~250 MHz

CUTIE Freq ~140 MHz

SoC Domain
Cluster 
Domain
(PULPO)

SNE CUTIE

FLLs

3000 µm

3
0

0
0

 µ
m

The Kraken: an “Extreme Edge”  Brain



• Completely Unrolled Ternary Neural Inference Engine: K × K window, all input channels, cycle-by-cycle sliding

• One Output Compute Unit (OCU) computes one output activation per cycle!

• Zeros in weights and activations, spatial smoothness of activations reduce switching activity

Output channel compute unit (OCU)
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Ternary Weights
(2bits) 864 Ternary Multipliers

2 Popcount units

Ternary Activations
(2bits)

CUTIE: Perception from Frame Sensors
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[Scherer et al. TCAD22]

Aggressive quantization and full specialization



Kraken`s CUTIE Implementation
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• Data in 1.6 bits (Ternary value) with 

On-the-fly Compression/Decompression

• Configuration in Kraken

• 96 channels (Output compute units)

• 3 × 3 kernels

• 64 × 64 pixels feature maps (158 KiB)

• 9 layers of weights (117 KiB)

• Lots of TMAC/cycle

• 96 OCUs, 96 Input channels, 3 × 3 kernels:

• 96 × 96 × 3 × 3  = 82'944 Ternary-MAC/cycle
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General Purpose: Domain-Specialized RV32 Core (PE) 

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

8-bit Convolution Vanilla Specialized for AI → Mixed precision SIMD (16-2bit)

N

15x less instructions than Vanilla
90%+ ALU Utilization

Init NN-RF (outside of the loop)
lp.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
end

N/4
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Instruction set: open and extensible by construction (great!)

RISC-V
core

Specialization Cost: Power, Area: 1.5×↑ Time 15×↓ → E = PT 10× ↓ 

RISC-V
core



PULP Paradigm: A PE cluster accelerates a host system
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SNE: Perception on Event Sensors
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Event Sensors – DVS camera
Ultra-low latency
Energy- proportional interface

Leaky Integrate & Fire (LIF) neurons

[Di Mauro et al. DATE22]

Spiking Neural Engine (SNE)

SNE works seamlessly with DVS (event-based) sensors



Event consumption, and output spikes generation
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A more complex dynamic than conventional DNNs neurons:

• Membrane Potential Accumulation/Activation 1× SynAcc = 1× 4b-ADD + 1× 8b-COMPARE

• Membrane Potential decay 1× SynDec = (1× 8b-MUL) + (1× 8b-MUL + 1× 8b-ADD)

t

x

y

convolutional
3 × 3 kernels

3 × 3 × T Event-Frame patch
List of Coordinate (COO)

t

1 × 1 × T tensor 
per output neuron

Leaky Integrate & Fire (LIF) neuron
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Kraken Shield and System Architecture
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• 7g payload

• DVS and frame-based cameras → real-time multi-modal perception.

• Designed for integration into nano-UAV platforms



Kraken Power Consumption (all Included)
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Model Inference/s µJ/inf
Power 
(mW)

SNE 1.02k 18 98

CUTIE 10k 6 110

PULP 221 750 165

Combined power consumption of SNE, CUTIE, PULP cluster 

P=373mW, representing just 5% of the UAV’s power budget



Heterogeneous, Multiscale Accelerated Computing 
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EXT

ACC
#1

ACC
#2

EXT EXT EXT

Cluster 1 

mem
bank
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Tightly coupled data memory interconnectDMA

RV
core

RV
core

RV
core

RV
core

Instruction Cache

High-speed on-chip interconnect (NoC, AXI, other..)

Computing cluster with tightly coupled accelerators

Extensions to processor cores

• Explore new extensions

• Efficient implementations

Shared-memory Accelerators

• Domain specific

• Local memory

L2
Accelerator

#1

L2
Accelerator

#2

L2
Accelerator

#M

Decoupled 
accelerators

Multiple Decoupled Accelerators

• Communication 

• Synchronization

EX
T

External
Memory

Controller

L2 memory

Peripherals

Host
core

Host, L2, L3 IOs

Multiple Scales of acceleration 

RISC-V is a key enabler → max agility, enabling SW build-up, without vendor lock-in



Tightly-coupled Accelerators 
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HWPE: Reconfigurable Binary Engine
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𝐲 𝑘𝑜𝑢𝑡 = 𝒒𝒖𝒂𝒏𝒕 

𝑖=0..𝑴



𝑗=0..𝑵



𝑘𝑖𝑛

2𝑖2𝑗 𝐖𝐛𝐢𝐧 𝑘𝑜𝑢𝑡 , 𝑘𝑖𝑛 ⊗𝐱𝐛𝐢𝐧 𝑘𝑖𝑛

RBE Block

Peak throughput 
10368=9×9×4×32

Scale & Add
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Energy efficiency 10-20× (0.1pJ/OP) w.r.t. SW on cluster @same accuracy 



Specialization in perspective

ISA-based 10-20x →1-5pJ (8bit)

Configurable DP 10-20x → 20-100fJ (4bit)

Highly specialized DP 10-20x →1-5fJ (ternary)

Energy-Efficient RV Core → 20pJ (8bit)

XPULP

RBE, NEUREKA

CUTIE, SNN

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead 
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https://pjlab-adg.github.io/DiLu/

LLM Reasoning on Human Commands & Robot Observations
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Perception DNN(s)

Reasoning 
(generation) DNN(s)

Beyond Perception:  Reasoning with Gen.AI



Eval
Loss 
(log)

Pervasive Gen.AI Challenge
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Performance of GPT-4 and smaller models: y-axis mean log pass rate on a subset of the HumanEval dataset. Dotted line: A power 
law fit to smaller models (excluding GPT-4) → Accurately predicts GPT-4’s performance. x-axis is training compute (log)

OpenAI’23 arXiv:2303.08774



There is no Othe Way to Go, but UP 
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Extensions to processor cores

• Explore new extensions

• Efficient implementations

Shared-memory Accelerators

• Domain specific

• Local memory
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Multiple Decoupled Accelerators

• Communication 

• Synchronization
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T
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Memory
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Peripherals
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core

Host, L2, L3 IOs

Multiple Scales of acceleration 

Specialize interconnects too!  Local, global, package, system



Snitch Core: Latency Tolerant, Extensible RV PE 

• Snitch: tiny (20KGE), extensible RV core

• Extensible through accelerator port

• Latency-tolerant through scoreboard+ld/st queue
→ can issue ~10 non-blocking memOPs

• Tolerates 10 cycles of memory latency (Little’s law)

• Paired with ISA extension subsystem

• Native streaming support

• Load/store elision

• Reduction of I$ pressure 
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SSR & FREP:  Streaming Extension
• SSR: Link register read/writes into implicit LD/ST

• Extension around the core’s register file

• Address generators (2-3KGE/SSR) 

• Configured out of inner loop (LD/ST elision)

• Staggering: generators prefetch from memory (latency tolerant!)

• FREP: L0 instruction buffer (no I$ access)

• Pseudo-dual issue (Int pipeline can proceed in parallel)

• No boundary checking for loop (similar HW loop in DSPs)

• Boost FPU utilization → 100% (once setup is amortized)

dotp: 30% FPU dotp: 90% FPU

Latency Tolerance: Less expensive than OoO (CPU) and Multi-threading (GPU)



• 8 Snitch compute cores

• SIMD 64b FPU with SSRs & FREP

• 9th Core: DMA engine

• 512b interface to interconnect

• HW support for autonomous ≤ 2D transfers,
higher dimensions through SW

• Latency-tolerance block transfers (100s of cycles)

• 128 KiB TCDM

• 32-bank, low-latency shared scratchpad

• Double-buffer large chunks (KBs) with DMA

• Shared TCDM, I-cache and peripherals

• Shared DMA (10% overhead) for latency tolerance of L2+→L1: 100s vs 10s cycles

64 GB/s duplex

8 GB/s 
duplex

Snitch Cluster: The Fundamental Compute Block 

25



Specializing the Cluster for Gen.AI 

• Attention is key 

• Attention matrix is a square matrix of order input length

•  Quadratic memory requirement vs. sequence length

•  No asymmetry between operands (“weightless”)

• MatMul & Softmax dominate

26

MatMul

MatMul

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

Softmax 𝐱 i =
exi−max(𝐱)

σj
n exj−max(𝐱)



Matmul Benefits from Large Shared-L1 clusters
• Why? 

• Better global latency tolerance if L1size > 2× L2latency × L2bandwidth  (Little’s law + double buffer) 

• Smaller data partitioning overhead

• Larger Compute/Boundary bandwidth ratio:  N3/N2 for MMUL grows linearly with N!

• A large “MemPool”: 256+ cores and 1+ MiB of shared L1 data memory
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MemPool Cluster: A physical-aware design
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Group

MemPool
&

Terapool

MemPool ClusterMemPool Group

• A Scalable Manycore Architecture with Low-Latency Shared L1 Memory

• 256+ cores

• 1+ MiB of shared L1 data memory

• ≤ 8 cycle latency (Snitch can handle it)

• Hierarchical design

• Implemented in GF22

• Targeting 500 MHz (SS/0.72V/125°C)

• Reaching 600 MHz (TT/0.80V/25°C)

• Targeting iso-frequency with PULP

• Cluster area of 13 mm2

• 5 mm diagonal

• Round trip in 5 cycles

• Terapool: 1024 Cores!



MemPool + Integer Transformer Accelerator (ITA)

Tightly coupled Acceleration Enginee

• Matmul & Softmax

• Reduce pressure on memory and interconnect

Collaborative Execution

• Cores prepare activations for the next attention head

• Final head accumulation computed in cores

• Nonlinearity in cores (PACE)

29



MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

• 8-bit inputs, weights & outputs

• Builtin data marshaling & pipelined operation

• Streaming partial Softmax adding no additional latency

• Fused Q× KT, Softmax and A × V computation

• Support for hardware-aware Softmax 
approximation in QuantLib
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Dot Product
Units

Q K V Q.KT A.V Output

Softmax
DA EN

DI

𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛+1 = 𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛 ∙ 𝑒𝑎𝑚𝑎𝑥𝑛−𝑎𝑚𝑎𝑥𝑛+1



Attention on ITA
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Performance 
increase of 15x

Energy Efficiency 
increase of 36x

Area Efficiency 
increase of 74x

15x

8x

36x

20x

74x
40x
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Scaling UP: Efficient and Flexible Data Movement

Problem: HBM Accesses are critical in 
terms of

▪ Access energy

▪ Congestion

▪ High latency

Instead reuse data on lower levels of 
the memory hierarchy

▪ Between clusters

▪ Across groups

Smartly distribute workload
▪ Clusters: Tiling, Depth-First 

▪ Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

Big trend!



Addressing interconnect scalability

• Fat-tree was very challenging in Implementation

• AXI has severe scalability issues

• Top-level Xbar had to be split up

• Still, interconnect takes up almost 40%*

• Working on NoC solution, FlooNoC

• Fully AXI4 compatible

• Solves AXI4 scalability issues

• Designed with awareness of physical design

• Wide & physical channels

33
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Replacing the AXI interconnect with a NoC

• Potential for big area/performance
gains

• Only ~10% interconnect area

• 66% more clusters, same floorplan

• High Bandwidth: 629Gbps/link

• High Energy-Efficiency: 0.19pj/B/hop
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MHA Mapping on NoC: FlattenAttention 
• Proposed Dataflow Schedule of MHA

• We leverage all-cluster L1 for single head attention – Minimize I/O complexity

• Gen.AI specialized NoC

• Matrix transpose engine for transposition of (K -> KT)

• Collective operations on NoC

• Benchmark & Results

• 16x16 Clusters (8TFLOPS, 256kB L1), 2TB/s HBM

• One layer MHA of Llama3-70B (seq=4K, batch=8)

• Efficient collective operation support on NoC is essential

• 3x speedup to baseline 

Total Runtime(ms)

Baseline:
Flash Attention for 
Each Head on Each 

Cluster

14.4

Flatten Attention 
(w/o NoC collective)

17.7

Flatten Attention
(w/ NoC collective)

4.6
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Scaling UP: From Chip to chiplets
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Snitch Core Snitch Cluster

Occamy Group

Occamy ChipletOccamy System



37

Not Only Layer-by-Layer distribution across Chiplets!

         

      

      

𝑯(0) 𝑯(𝑛)…𝑯(1)

concat

∗ 𝑊𝑜

=

𝑯(𝑛−1)

Chiplet0 Chiplet1

C
h

ip
let0

C
h

ip
let1

Heads are parallelized over 
quadrants & chiplets

𝐿0 𝐿1 𝐿=+

results are reduced across 
chiplets
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Linear Projection & Head Concatenation Fusion
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Weight tiles are loaded from HBM2
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𝑯(1) 𝑊𝑜

𝑯(2) 𝑊𝑜

𝑯(3) 𝑊𝑜
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Linear Projection & Head Concatenation Fusion
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𝐿0

𝐿0

𝐿0

𝐿0

𝐿0

𝐿0

𝐿1

𝐿1

𝐿1

𝐿1

𝐿1

𝐿1



40

Linear Projection & Head Concatenation Fusion
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Logarithmic-tree result reduction on-chiplet3
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Reduction across chiplet4
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Linear Projection & Head Concatenation Fusion
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HBM2E

HBM2E

Logarithmic-tree result reduction on-chiplet3

𝐿

Reduction across chiplet4
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Linear Projection & Head Concatenation Fusion

C
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C
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HBM2E

HBM2E

Results are stored back to HBM5

𝐿0 𝐿1



𝐿03 𝐿47
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𝐿01 𝐿23 𝐿45 𝐿67

𝐿0 𝐿1 𝐿2 𝐿3
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Synchronization
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What’s next?

44



What’s next?
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What’s next?
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• Research on open-source energy-efficient computing 
architectures

• Started in 2013, we are celebrating 10 years of our project this year

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people

47

Thank You!
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