

Designing "Artificial Brains" for Next-Generation Autonomous Systems

Luca Benini Ibenini@iis.ee.ethz.ch, luca.benini@unibo.it

PULP Platform Open Source Hardware, the way it should be! @pulp_platform pulp-platform.org youtube.com/pulp_platform

Autonomous Systems: Roadmap Path Towards Full Autonomy Compute Networking Power Speed (TFLOPS) (Gbit/s) High-Speed, Reliable & Secure Nervous **Efficient** Level 4-5 100 100 System Self Driving High-Performance Brain **On-car Computing** 10 10 Level 2-3 $P_{MAX} < 1.5 \, kW$ Local Computing Decision "Behind" Every Sensor Assistant **Centralized** Computing Integrates Input From All 1 Sensors (Sensor Fusion) Similar to a Human Driver's Level 1-2 Simple Aid Brain 0.1 0.1 2010 - 2018 2025... 2019 - 2025 [SCR23]

ETH zürich

Embodied AI

[AMD HotChips24]

Efficient

On-car Computing P_{MAX} < 1.5 kW Model complexity 10× every ~2.5 years

10× every ~2.5 years Moore's Law 10x every 12 years!

Autonomous Nano-Drones

Advanced autonomous drone

A. Bachrach, "Skydio autonomy engine: Enabling the next generation of autonomous flight," IEEE Hot Chips 33 Symposium (HCS), 2021

https://www.skydio.com/skydio-2-plus

- 3D Mapping & Motion Planning ۲
- **Object recognition & Avoidance** ullet
- 0.06m² & 800g of weight •
- Battery Capacity 5410 mAh •

Nano-drone

https://www.bitcraze.io/products/crazyflie-2-1

- Smaller form factor of 0.008m²
- Weight:

- **27 g (30× lighter)**
- Battery capacity:
- 250 mAh (20× smaller)

Intelligence in a 30× smaller payload, 20× lower energy budget?

Achieving True Autonomy on Nano-UAVs

Multiple,

complex, heterogeneous

tasks at high speed and robustness fully on board

ALMA MATER STUDIORUM

Obstacle avoidance & Navigation

Object detection

Environment exploration

Multi-GOPS workload at extreme efficiency $\rightarrow P_{max}$ 100mW

Efficiency through Heterogeneity: Multi-Specialization Brain-inspired: Multiple areas, different structure different function!

Kraken: 22nm SoC, Multiple Heterogeneous Accelerators

The Kraken: an "Extreme Edge" Brain

2000

- RISC-V Cluster
 8 Compute cores +1 DMA core
- CUTIE
 - Dense ternary-neural-network accelerator
- SNE
 Energy-proportional spikingneural-network accelerator

	<	5000 μπ			
				Technology	22 nm FDSOI
			Cluster	Chip Area	9 mm ²
'k	SoC Domain		Domain (PULPO)	SRAM SoC	1 MiB
				SRAM Cluster	128 KiB
u ц о			Ψ.	VDD range	0.55 V - 0.8 V
300		Edition		Cluster Freq	~370 MHz
	SNE	CU	CUTIE	SNE Freq	~250 MHz
	Mark .		Thin Frischor A dentation 2 desce Automotion 2 descent	CUTIE Freq	~140 MHz
			rizen Spilatzan are Refistanser		
.					

CUTIE: Perception from Frame Sensors

Output channel compute unit (OCU)

- Completely Unrolled Ternary Neural Inference Engine: K × K window, all input channels, cycle-by-cycle sliding
- One Output Compute Unit (OCU) computes one output activation per cycle!
- Zeros in weights and activations, spatial smoothness of activations reduce switching activity

Aggressive quantization and full specialization

Kraken's CUTIE Implementation

1fJ/MAC (1POPS/W) – Ternary OPS

ETHZÜRICH

General Purpose: Domain-Specialized RV32 Core (PE)

Specialization Cost: Power, Area: $1.5 \times \uparrow$ Time $15 \times \downarrow \rightarrow$ E = PT $10 \times \downarrow \downarrow$

ETH zürich

ALMA MATER STUDIORUM

PULP Paradigm: A PE **cluster** accelerates a host system

ETH zürich ALMA MATER STUDIORUM

SNE: Perception on Event Sensors

Event Sensors – DVS camera Ultra-low latency Energy- proportional interface

Spiking Neural Engine (SNE)

Leaky Integrate & Fire (LIF) neurons

[Di Mauro et al. DATE22]

SNE works seamlessly with DVS (event-based) sensors

ETH zürich

Event consumption, and output spikes generation

A more complex dynamic than conventional DNNs neurons:

- Membrane Potential Accumulation/Activation 1× SynAcc = 1× 4b-ADD + 1× 8b-COMPARE
- Membrane Potential decay 1× SynDec = (1× 8b-MUL) + (1× 8b-MUL + 1× 8b-ADD)

Kraken Shield and System Architecture

7g payload

ETH zürich

- DVS and frame-based cameras \rightarrow real-time multi-modal perception.
- Designed for integration into nano-UAV platforms

ALMA MATER STUDIORUM

Kraken Power Consumption (all Included)

Combined power consumption of SNE, CUTIE, PULP cluster

Model	Inference/s	μJ/inf	Power (mW)
SNE	1.02k	18	98
CUTIE	10k	6	110
PULP	221	750	165

P=373mW, representing just 5% of the UAV's power budget

Heterogeneous, Multiscale Accelerated Computing

Multiple Scales of acceleration

Extensions to processor cores

- Explore new extensions
- Efficient implementations

Shared-memory Accelerators

- Domain specific
- Local memory

Multiple Decoupled Accelerators

- Communication
- Synchronization

External 12 Memorv Accelerator mem mem mem mem mem mem Controller #1 bank bank bank bank bank bank Tightly coupled data memory interconnect L2 memory DMA RV RV RV RV ACC ACC 12 Host #2 #1 core core core core Accelerator core #2 EXT 12 Instruction Cache Peripherals Accelerator Cluster 1 #M Computing cluster with tightly coupled accelerators Decoupled Host, L2, L3 IOs

RISC-V is a key enabler \rightarrow max agility, enabling SW build-up, without vendor lock-in

accelerators

High-speed on-chip interconnect (NoC, AXI, other..)

Tightly-coupled Accelerators

Energy efficiency 10-20× (0.1pJ/OP) w.r.t. SW on cluster @same accuracy

ETH zürich

ALMA MATER STUDIORUM

Specialization in perspective

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead

Beyond Perception: Reasoning with Gen.Al

LLM Reasoning on Human Commands & Robot Observations

Pervasive Gen.AI Challenge

OpenAl'23 arXiv:2303.08774

Performance of GPT-4 and smaller models: y-axis mean log pass rate on a subset of the HumanEval dataset. Dotted line: A power law fit to smaller models (excluding GPT-4) \rightarrow Accurately predicts GPT-4's performance. x-axis is training compute (log)

There is no Othe Way to Go, but UP

Multiple Scales of acceleration

Extensions to processor cores

- Explore new extensions
- Efficient implementations

Shared-memory Accelerators

- Domain specific
- Local memory

Multiple Decoupled Accelerators

- Communication
- Synchronization

Specialize interconnects too! Local, global, package, system

Snitch Core: Latency Tolerant, Extensible RV PE

- Snitch: tiny (20KGE), extensible RV core
 - Extensible through accelerator port
 - Latency-tolerant through scoreboard+ld/st queue
 → can issue ~10 non-blocking memOPs
 - Tolerates 10 cycles of memory latency (Little's law)
- Paired with ISA extension subsystem
- Native streaming support
 - Load/store elision

ETH zürich

• Reduction of I\$ pressure

ALMA MATER STUDIORUN

SSR & FREP: Streaming Extension

- SSR: Link register read/writes into implicit LD/ST
 - Extension around the core's register file
 - Address generators (2-3KGE/SSR)

ETH zürich

- Configured out of inner loop (LD/ST elision)
- Staggering: generators prefetch from memory (latency tolerant!)
- FREP: L0 instruction buffer (no I\$ access)

ALMA MATER STUDIORUM

- Pseudo-dual issue (Int pipeline can proceed in parallel)
- No boundary checking for loop (similar HW loop in DSPs)
- Boost FPU utilization → 100% (once setup is amortized)

dotp: 30% FPU	dotp: 90% FPU	
loop: fld r0 , %[a] fld r 1, %[b] fmadd r2, r0 , r 1	-	scfg 0, %[a], ldA scfg 1, %[b], ldB loop: fmadd r2, ssr0, ssr1

Latency Tolerance: Less expensive than OoO (CPU) and Multi-threading (GPU)

Snitch Cluster: The Fundamental Compute Block

- 8 Snitch compute cores
 - SIMD 64b FPU with SSRs & FREP
- 9th Core: DMA engine
 - 512b interface to interconnect
 - HW support for autonomous ≤ 2D transfers, higher dimensions through SW
 - Latency-tolerance block transfers (100s of cycles)
- 128 KiB TCDM
 - 32-bank, low-latency shared scratchpad
 - Double-buffer large chunks (KBs) with DMA
- Shared TCDM, I-cache and peripherals

Specializing the Cluster for Gen.Al

• Attention is key

ETH zürich

• Attention matrix is a square matrix of order input length

Query

Linear

- Quadratic memory requirement vs. sequence length
- No asymmetry between operands ("weightless")
- MatMul & Softmax dominate

Softmax(
$$\mathbf{x}$$
)_i = $\frac{e^{x_i - \max(\mathbf{x})}}{\sum_j^n e^{x_j - \max(\mathbf{x})}}$

ALMA MATER STUDIORUM

Matmul Benefits from Large Shared-L1 clusters

• Why?

ETH zürich

- Better global latency tolerance if L1_{size} > 2× L2_{latency} × L2_{bandwidth} (Little's law + double buffer)
- Smaller data partitioning overhead

ALMA MATER STUDIORUN

- Larger Compute/Boundary bandwidth ratio: N³/N² for MMUL grows linearly with N!
- A large "MemPool": 256+ cores and 1+ MiB of shared L1 data memory

MemPool Cluster

MemPool Cluster: A physical-aware design

- A Scalable Manycore Architecture with Low-Latency Shared L1 Memory
 - 256+ cores
 - 1+ MiB of shared L1 data memory
 - ≤ 8 cycle latency (Snitch can handle it)
- Hierarchical design
- Implemented in GF22
 - Targeting 500 MHz (SS/0.72V/125°C)
 - Reaching 600 MHz (TT/0.80V/25°C)
 - Targeting iso-frequency with PULP

ALMA MATER STUDIORUM

- Cluster area of 13 mm²
 - 5 mm diagonal

ETH zürich

- Round trip in 5 cycles
- Terapool: 1024 Cores!

MemPool Group

Group 0

Group

MemPool + Integer Transformer Accelerator (ITA)

Tightly coupled Acceleration Enginee

- Matmul & Softmax
- Reduce pressure on memory and interconnect

Collaborative Execution

- Cores prepare activations for the next attention head
- Final head accumulation computed in cores
- Nonlinearity in cores (PACE)

MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

- 8-bit inputs, weights & outputs
- Builtin data marshaling & pipelined operation
- Streaming partial Softmax adding no additional latency
- Fused $Q \times K^T$, Softmax and $A \times V$ computation
- Support for hardware-aware Softmax approximation in QuantLib

ETH zürich

Attention on ITA

Performance increase of **15x**

Energy Efficiency increase of 36x

Area Efficiency increase of 74x

ALMA MATER STUDIORUN

ETH zürich

Attention Efficiency

Scaling UP: Efficient and Flexible Data Movement

Problem: HBM Accesses are critical in terms of

- Access energy
- Congestion
- High latency

Instead reuse data on lower levels of the memory hierarchy

- Between clusters
- Across groups

Smartly distribute workload

- Clusters: Tiling, Depth-First
- Chiplets: E.g. Layer pipelining

Big trend!

Addressing interconnect scalability

• Fat-tree was very challenging in Implementation

- AXI has severe scalability issues
- Top-level Xbar had to be split up
- Still, interconnect takes up almost 40%*
- Working on NoC solution, *FlooNoC*
 - Fully AXI4 compatible
 - Solves AXI4 scalability issues
 - Designed with awareness of physical design
 - Wide & physical channels

Replacing the AXI interconnect with a NoC

- Potential for big area/performance gains
 - Only ~10% interconnect area
 - 66% more clusters, same floorplan
 - *High Bandwidth*: 629Gbps/link
 - High Energy-Efficiency: 0.19pj/B/hop

MHA Mapping on NoC: FlattenAttention

- Proposed Dataflow Schedule of MHA
 - We leverage all-cluster L1 for single head attention Minimize I/O complexity
 - Gen.Al specialized NoC
 - Matrix transpose engine for transposition of $(K \rightarrow K^T)$
 - Collective operations on NoC
- Benchmark & Results
 - 16x16 Clusters (8TFLOPS, 256kB L1), 2TB/s HBM
 - One layer MHA of Llama3-70B (seq=4K, batch=8)
 - Efficient collective operation support on NoC is essential focus only on one head every head sequentially
 - 3x speedup to baseline

Scaling UP: From Chip to chiplets

Occamy System

Snitch Cluster

SuperBank 3

B31

B23

↑ ↑

CC 7

512b AXI Crossbar

L0 IS

Periph

CC 8

LO IS

Cluster

SB 0

B

SB 1

. .

CC 0

LO IS

ZeroMemor

B8

SB 2

Shared L1 Scratchpad Crossbar

1 1

CC 1

Shared L1 I\$

LO IS

B16

ETHZÜRICH

Not Only Layer-by-Layer distribution across Chiplets!

ETHZÜRICH

What's next?

ETH zürich 🛞 ALMA MATER STUDIORUM

What's next?

What's next?

ETHZÜRICH

Thank You!