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Format
# Representable 

values

Maximum 

Value

FP32 4.29 × 109 ≈ 3.40 × 1038

bfloat16 65536 ≈ 3.40 × 1038

FP16 65536 ≈ 65504

FP8 256 ≈ 49152

FP8alt 256 ≈ 224

8 23

8 7

5 10

5 2

4 3

bfloat16

FP32

FP16

FP8

FP8alt

8 7

5 10

5 2

4 3

5 2

4 3

5 2

4 3

• Low-precision formats:

• Higher performance and energy efficiency

• Lower memory footprint

• Lower data movement energy

• Lower-accuracy results

• Mixed-precision operations:

• Low-precision inputs + higher-precision
accumulator

• Low-precision benefits + retaining accuracy
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• Machine Learning

• Many AI architectures support low and 
mixed-precision

A. Reuther et al., “Lincoln AI Computing Survey (LAICS) Update”, IEEE HPEC, 2023
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• More and more algorithms beyond NN being
ported to low and mixed-precision [1], [2]

• Climate modelling and weather forecast [3]

• Audio processing [4]

• Low-precision formats are more vulnerable 
to overflow, which can be a destructive 
event

[1] N. J. Higham and T. Mary, “Mixed precision algorithms in numerical linear algebra”, 
     Acta Numerica 2022
[2] M. Croci “An overview of mixed-precision methods in scientific computing”, 2022
[3] E. A. Paxton et al., “Climate modeling in low precision: Effects of both deterministic
      and stochastic rounding”, Journal of Climate, 2022
[4] G. Cardarilli et al., “Tunable floating point for high quality audio systems: 
      The sound of numbers”, IEEE ACSSC, 2023

• Machine Learning

• Many AI architectures support low and 
mixed-precision

A. Reuther et al., “Lincoln AI Computing Survey (LAICS) Update”, IEEE HPEC, 2023
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1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)
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FPU
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result_o
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2mask

1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)
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FPU
0 0 0 00/1

0 0 0 01

= =

YES

Overflow detectedNo overflow

NO

3compare…

FCSR

… x x x x0/1

result_o

0 0 0 00/1

status_o

Regfile

1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)

2. System’s reactions to overflow

• Producing an INF or terminating the execution

• Handling the exception (exponent wrapping, scaling, re-evaluating with extended range)

Limiting overflow detection
overhead in RISC-V systems
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FPU
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Overflow detectedNo overflow
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3compare…
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… x x x x0/1
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0 0 0 00/1

status_o
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1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)

2. System’s reactions to overflow

• Producing an INF or terminating the execution

• Handling the exception (exponent wrapping, scaling, re-evaluating with extended range)

Limiting overflow detection
overhead in RISC-V systems

Leveraging mixed-precision
for efficient online recovery
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1. RISC-V ISA Extension

• We extend an open-source cluster of RISC-V cores1 to:

• Minimize the overhead for overflow detection

• Optimize overflow recovery routines

2. Efficient Overflow Recovery Routine

• We implement an online recovery scheme based on a set of checkpoints and leveraging a mixed-
precision ISA, and evaluate it at an increasing probability of overflow

• Our solution adds less than 1% area overhead at a core level and we show that it can be tuned to 
recover from a single overflow in a 128x128 matmul at only 3% performance penalty

1https://github.com/pulp-platform/snitch_cluster
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MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs  + 1 DMA core

1https://github.com/pulp-platform/snitch_cluster



Baseline System

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 11

MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs  + 1 DMA core

• Enhanced with streaming ISA extensions + 
hardware-managed loops

• Up to more than 90% of FPU utilization 
(i.e., a new FPU instruction issued in 90% 
of the cycles)

1https://github.com/pulp-platform/snitch_cluster
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MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs  + 1 DMA core

• Enhanced with streaming ISA extensions + 
hardware-managed loops

• Up to more than 90% of FPU utilization 
(i.e., a new FPU instruction issued in 90% 
of the cycles)

• 32 banks of scratchpad memory

1https://github.com/pulp-platform/snitch_cluster
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MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs  + 1 DMA core

• Enhanced with streaming ISA extensions + 
hardware-managed loops

• Up to more than 90% of FPU utilization 
(i.e., a new FPU instruction issued in 90% 
of the cycles)

• 32 banks of scratchpad memory

1https://github.com/pulp-platform/snitch_cluster
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Multi and Mixed-Precision CVFPU2

• Support for 8/16-bit FP dot-product instructions with accumulation in 16/32-bit FP

• Two 8-to-16b wDotp units + Two 16-to-32b wDotp units

• Four 8-to-16b wDotp operations or two 16-to-32b wDotp operations

2https://github.com/pulp-platform/cvfpu
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• FP8 with FP16 accumulation (FP16 max ≈ 65k, vulnerable to overflow)

• Snitch

• IBM AI Chip (S. K. Lee et al., “A 7-nm four-core mixed-precision AI chip with 26.2-TFLOPS hybrid-FP8 training, 104.9-TOPS INT4 inference, 

and workload-aware throttling”, IEEE JSSC 2021)

• NVIDIA H100

• FP8 with FP32 accumulation (higher cost)

• Tesla Dojo

• Intel Gaudi 3

• Previous SoA studies → Higher cost for FP32 accumulation (M. van Baalen et al., “FP8 versus INT8 for efficient deep 

learning inference”, 2023)

• FP8 with FP16 + FP32 accumulation

• NVIDIA ADA using H100 supports both FP16 and FP32 accumulation

• Half the performance when accumulating in FP32
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• FP8 with FP16 accumulation (FP16 max ≈ 65k, vulnerable to overflow)

• Snitch

• IBM AI Chip (S. K. Lee et al., “A 7-nm four-core mixed-precision AI chip with 26.2-TFLOPS hybrid-FP8 training, 104.9-TOPS INT4 inference, 

and workload-aware throttling”, IEEE JSSC 2021)

• NVIDIA H100

• FP8 with FP32 accumulation (higher cost)

• Tesla Dojo

• Intel Gaudi 3

• Previous SoA studies → Higher cost for FP32 accumulation (M. van Baalen et al., “FP8 versus INT8 for efficient deep 

learning inference”, 2023)

• FP8 with FP16 + FP32 accumulation

• NVIDIA ADA using H100 supports both FP16 and FP32 accumulation

• Half the performance when accumulating in FP32

• We apply a similar approach to 
support 8-to-32b wDotp on Snitch

• Reusing the modules already
available (16-to-32b wDotp units)
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• Poll FCSR

• Mask overflow flag

• Check overflow flag 

• if 1 jump to recovery routine

• Update loop counter

• Exit loop check
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BASELINE ISA

% FCSR check overhead per 
% loop iteration

mv    a0, zero
mv a1, 128

start: <loop_body>
...
csrr a5, fcsr
andi a5, a5, 4
bneqz a5, recovery
addi  a0, 1
bne a0, a1, start
...
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% FCSR check overhead per 
% loop iteration

mv    a0, zero
mv a1, 128

start: <loop_body>
...
csrr a5, fcsr
andi a5, a5, 4
bneqz a5, recovery
addi  a0, 1
bne a0, a1, start
...
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% FCSR check overhead out
% of loop iteration

mv    a0, zero
mv a1, 128

start: <loop_body>
...
addi  a0, 1
bneov a0, a1, start
csrr a5, fcsr
andi a5, a5, 4
bneqz a5, recovery
...
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BASELINE ISA EXTENDED ISA

Poll FCSR

• Overflow-conditioned branch instructions (bneov) to move the overflow check outside the loop

• Exiting the loop either if the loop completed its iterations or an overflow has been raised

• Outside the loop → overflow check to detect whether the loop has been exited because of overflow

Overflow-Conditioned Branches for Low-Cost Detection
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• Online recovery on baseline ISA requires converting the inputs (8b->16b) to higher-precision and then 
compute with a higher-precision accumulation (16-to-32-b widening dot product)

• ISA extension adding two 8-to-32-bit widening dot-products to limit the overhead

% 8-to-16-to-32b wDotp
fcvtl.h.b fa2, ft0
fcvtu.h.b fa3, ft0
fcvtl.h.b fa4, ft1
fcvtu.h.b fa5, ft1
wDotp.s.h fa0, fa2, fa4
wDotp.s.h fa1, fa3, fa5

% 8-to-16b wDotp
wDotp.h.b fa0, ft0, ft1

Recovery

BASELINE ISA EXTENDED ISA

% 8-to-32b wDotp
wDotpl.s.b fa0, ft0, ft1
wDotpu.s.b fa1, ft0, ft1L

o
o
p

L
o
o
p

L
o
o
p
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SIMD wDotp.u8-to-32: acc32 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32 fa0FP32FP32

64 bits

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

FP8FP8FP8FP8

FP8FP8FP8FP8

××××

• 8-to-32-bit wDotp 
• 8 FLOP/cycle/FPU

• Computed on the two 16-to-32 wDotp units

SIMD wDotp8-to-16: acc16 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32FP16FP16

64 bits

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

FP32FP16FP16

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

××××××××

• 8-to-16-bit wDotp 
• 16 FLOP/cycle/FPU

fa0



SIMD wDotp.l8-to-32: acc32 += a8 × b8 + c8 × d8 

ft0

ft1

FP32 FP32 fa0FP32FP32

64 bits

FP8FP8FP8FP8FP8FP8FP8FP8

FP8FP8FP8FP8FP8FP8FP8FP8

+ +

++

××××

Mixed Precision Widening Operations
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SIMD wDotp.u8-to-32: acc32 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32 fa0FP32FP32

64 bits

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

FP8FP8FP8FP8

FP8FP8FP8FP8

××××

• 8-to-32-bit wDotp 
• 8 FLOP/cycle/FPU

• Computed on the two 16-to-32 wDotp units

• Two instructions to process the 
upper and lower parts of the inputs
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wDotp

FP8 → FP16

Overflow?

Result Cast

FP16 → FP8 

NO

wDotp

FP8 → FP32

Result Cast

FP32→ FP8 

Overflow?
NO

Flush SSR

Re-program SSR 

re-starting from 

the latest iteration

YES

Matmul Start

Result Cast

FP32→ BF16

YES

Overflow recovery

Matmul

End

last 

iteration

Program SSR

innermost

loop

innermost

loop

middle

loop

middle

loop

• Based on a set of checkpoints

• Overflow recovery routine:

• Rolls back

• Re-evaluate at higher precision the 
portion between two checkpoints

• 8-to-32b wDotp
• Half the performance during the 

re-evaluation

• Resume normal operation
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• Implemented the extended MiniFloat Snitch 
cluster with Synopsys Fusion Compiler in a 
12nm technology

• Less than 1% of area overhead to Snitch core

• On a 128x128 matmul, tuned the checkpoints 
to achieve:

• 2% performance penalty in the absence of 
overflow (overflow detection overhead)

• 3% performance penalty to detect and 
recover one overflowing portion of code

• Computing the whole kernel with higher 
precision accumulation would be 1.7x slower 

2% 3%

Overhead

Fragile baseline
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Thank you!

pulp-platform.org@pulp_platform youtube.com/pulp_platform

Conclusions

• Extended a cluster of streaming RISC-V cores supporting low and 
mixed-precision operations for efficient overflow recovery at less 
than 1% area overhead at a RISC-V core level

• Devised an overflow recovery routine

• Showed that the checkpoints can be tuned to pay 3% of performance 
for recovery one overflow which would otherwise be destructive

• 1.7x faster than computing always at higher precision
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