
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Luca Bertaccini*, Siyuan Shen†, Torsten Hoefler†, Luca Benini *‡

Extending RISC-V for Efficient Overflow Recovery in
Mixed-Precision Computations

*IIS, ETH Zurich, Switzerland,
†SPCL, ETH Zurich, Switzerland
‡DEI, University of Bologna, Italy

The 42nd IEEE International Conference on Computer Design (ICCD 2024)
Milan, November 18-20, 2024

Low-Precision Floating-Point Formats

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 2

Format
Representable

values

Maximum

Value

FP32 4.29 × 109 ≈ 3.40 × 1038

bfloat16 65536 ≈ 3.40 × 1038

FP16 65536 ≈ 65504

FP8 256 ≈ 49152

FP8alt 256 ≈ 224

8 23

8 7

5 10

5 2

4 3

bfloat16

FP32

FP16

FP8

FP8alt

8 7

5 10

5 2

4 3

5 2

4 3

5 2

4 3

• Low-precision formats:

• Higher performance and energy efficiency

• Lower memory footprint

• Lower data movement energy

• Lower-accuracy results

• Mixed-precision operations:

• Low-precision inputs + higher-precision
accumulator

• Low-precision benefits + retaining accuracy

Low and Mixed-Precision is Trending

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 3

• Machine Learning

• Many AI architectures support low and
mixed-precision

A. Reuther et al., “Lincoln AI Computing Survey (LAICS) Update”, IEEE HPEC, 2023

Low and Mixed-Precision is Trending

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 4

• More and more algorithms beyond NN being
ported to low and mixed-precision [1], [2]

• Climate modelling and weather forecast [3]

• Audio processing [4]

• Low-precision formats are more vulnerable
to overflow, which can be a destructive
event

[1] N. J. Higham and T. Mary, “Mixed precision algorithms in numerical linear algebra”,
 Acta Numerica 2022
[2] M. Croci “An overview of mixed-precision methods in scientific computing”, 2022
[3] E. A. Paxton et al., “Climate modeling in low precision: Effects of both deterministic
 and stochastic rounding”, Journal of Climate, 2022
[4] G. Cardarilli et al., “Tunable floating point for high quality audio systems:
 The sound of numbers”, IEEE ACSSC, 2023

• Machine Learning

• Many AI architectures support low and
mixed-precision

A. Reuther et al., “Lincoln AI Computing Survey (LAICS) Update”, IEEE HPEC, 2023

SoA Overflow Detection and Reactions

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 5

FPU

Regfile

x x x x0/1

…

FCSR

… x x x x0/1
status_o

result_o

x x x x0/1

0 0 0 01

&

ALU

x x x x0/1

1

2

poll

mask

1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)

R
IS

C
-V

SoA Overflow Detection and Reactions

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 6

FPU

…

FCSR

… x x x x0/1

result_o

x x x x0/1

0 0 0 01

&

0 0 0 00/1

status_o

2mask

1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)

Regfile

R
IS

C
-V

ALU

SoA Overflow Detection and Reactions

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 7

FPU
0 0 0 00/1

0 0 0 01

= =

YES

Overflow detectedNo overflow

NO

3compare…

FCSR

… x x x x0/1

result_o

0 0 0 00/1

status_o

Regfile

1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)

2. System’s reactions to overflow

• Producing an INF or terminating the execution

• Handling the exception (exponent wrapping, scaling, re-evaluating with extended range)

Limiting overflow detection
overhead in RISC-V systems

R
IS

C
-V

ALU

SoA Overflow Detection and Reactions

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 8

FPU
0 0 0 00/1

0 0 0 01

= =

YES

Overflow detectedNo overflow

NO

3compare…

FCSR

… x x x x0/1

result_o

0 0 0 00/1

status_o

Regfile

1. Detecting overflow

• Upon overflow an exception is signalled through a status flag

• Usually trapped in high-end flexible cores but not in number-crunching systems (e.g., GPUs)

• Not all ISAs natively trap FP exceptions (e.g., RISC-V)

2. System’s reactions to overflow

• Producing an INF or terminating the execution

• Handling the exception (exponent wrapping, scaling, re-evaluating with extended range)

Limiting overflow detection
overhead in RISC-V systems

Leveraging mixed-precision
for efficient online recovery

R
IS

C
-V

ALU

Contributions

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 9

1. RISC-V ISA Extension

• We extend an open-source cluster of RISC-V cores1 to:

• Minimize the overhead for overflow detection

• Optimize overflow recovery routines

2. Efficient Overflow Recovery Routine

• We implement an online recovery scheme based on a set of checkpoints and leveraging a mixed-
precision ISA, and evaluate it at an increasing probability of overflow

• Our solution adds less than 1% area overhead at a core level and we show that it can be tuned to
recover from a single overflow in a 128x128 matmul at only 3% performance penalty

1https://github.com/pulp-platform/snitch_cluster

Baseline System

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 10

MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs + 1 DMA core

1https://github.com/pulp-platform/snitch_cluster

Baseline System

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 11

MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs + 1 DMA core

• Enhanced with streaming ISA extensions +
hardware-managed loops

• Up to more than 90% of FPU utilization
(i.e., a new FPU instruction issued in 90%
of the cycles)

1https://github.com/pulp-platform/snitch_cluster

Baseline System

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 12

MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs + 1 DMA core

• Enhanced with streaming ISA extensions +
hardware-managed loops

• Up to more than 90% of FPU utilization
(i.e., a new FPU instruction issued in 90%
of the cycles)

• 32 banks of scratchpad memory

1https://github.com/pulp-platform/snitch_cluster

Baseline System

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 13

MiniFloat Snitch Cluster of RISC-V Cores1

• 8 RISC-V cores coupled with 64-bit multi-
format SIMD FPUs + 1 DMA core

• Enhanced with streaming ISA extensions +
hardware-managed loops

• Up to more than 90% of FPU utilization
(i.e., a new FPU instruction issued in 90%
of the cycles)

• 32 banks of scratchpad memory

1https://github.com/pulp-platform/snitch_cluster

Baseline System’s FPUs

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 14

Multi and Mixed-Precision CVFPU2

• Support for 8/16-bit FP dot-product instructions with accumulation in 16/32-bit FP

• Two 8-to-16b wDotp units + Two 16-to-32b wDotp units

• Four 8-to-16b wDotp operations or two 16-to-32b wDotp operations

2https://github.com/pulp-platform/cvfpu

FPU

Operation

Group

COMP

Operation

Group

CAST

Operation

Group

DOTP

646464

64

Operands Distribution

Round-robin output arbitration

Operation

Group

ADDMUL

64-bit

FMA 32-bit

FMA 16-bit

FMA 8-bit FMA

ADDMUL

646464

64

Unpacking

Packing

DOTP

16-to-32

wDotp 8-to-16

wDotp

8-to-16

wDotp

646464

64

Unpacking

Packing

16-to-32

wDotp

Higher-Precision Accumulation in SoA Architectures

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 15

• FP8 with FP16 accumulation (FP16 max ≈ 65k, vulnerable to overflow)

• Snitch

• IBM AI Chip (S. K. Lee et al., “A 7-nm four-core mixed-precision AI chip with 26.2-TFLOPS hybrid-FP8 training, 104.9-TOPS INT4 inference,

and workload-aware throttling”, IEEE JSSC 2021)

• NVIDIA H100

• FP8 with FP32 accumulation (higher cost)

• Tesla Dojo

• Intel Gaudi 3

• Previous SoA studies → Higher cost for FP32 accumulation (M. van Baalen et al., “FP8 versus INT8 for efficient deep

learning inference”, 2023)

• FP8 with FP16 + FP32 accumulation

• NVIDIA ADA using H100 supports both FP16 and FP32 accumulation

• Half the performance when accumulating in FP32

Higher-Precision Accumulation in SoA Architectures

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 16

• FP8 with FP16 accumulation (FP16 max ≈ 65k, vulnerable to overflow)

• Snitch

• IBM AI Chip (S. K. Lee et al., “A 7-nm four-core mixed-precision AI chip with 26.2-TFLOPS hybrid-FP8 training, 104.9-TOPS INT4 inference,

and workload-aware throttling”, IEEE JSSC 2021)

• NVIDIA H100

• FP8 with FP32 accumulation (higher cost)

• Tesla Dojo

• Intel Gaudi 3

• Previous SoA studies → Higher cost for FP32 accumulation (M. van Baalen et al., “FP8 versus INT8 for efficient deep

learning inference”, 2023)

• FP8 with FP16 + FP32 accumulation

• NVIDIA ADA using H100 supports both FP16 and FP32 accumulation

• Half the performance when accumulating in FP32

• We apply a similar approach to
support 8-to-32b wDotp on Snitch

• Reusing the modules already
available (16-to-32b wDotp units)

Overflow-Conditioned Branches for Low-Cost Detection

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 17

• Poll FCSR

• Mask overflow flag

• Check overflow flag

• if 1 jump to recovery routine

• Update loop counter

• Exit loop check

L
o
o
p

O
v
e
r
f
l
o
w

C
h
e
c
k

BASELINE ISA

% FCSR check overhead per
% loop iteration

mv a0, zero
mv a1, 128

start: <loop_body>
...
csrr a5, fcsr
andi a5, a5, 4
bneqz a5, recovery
addi a0, 1
bne a0, a1, start
...

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 18

% FCSR check overhead per
% loop iteration

mv a0, zero
mv a1, 128

start: <loop_body>
...
csrr a5, fcsr
andi a5, a5, 4
bneqz a5, recovery
addi a0, 1
bne a0, a1, start
...

L
o
o
p

O
v
e
r
f
l
o
w

C
h
e
c
k

% FCSR check overhead out
% of loop iteration

mv a0, zero
mv a1, 128

start: <loop_body>
...
addi a0, 1
bneov a0, a1, start
csrr a5, fcsr
andi a5, a5, 4
bneqz a5, recovery
...

L
o
o
p

O
v
e
r
f
l
o
w

C
h
e
c
k

BASELINE ISA EXTENDED ISA

Poll FCSR

• Overflow-conditioned branch instructions (bneov) to move the overflow check outside the loop

• Exiting the loop either if the loop completed its iterations or an overflow has been raised

• Outside the loop → overflow check to detect whether the loop has been exited because of overflow

Overflow-Conditioned Branches for Low-Cost Detection

Mixed Precision for Efficient Overflow Recovery

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 19

• Online recovery on baseline ISA requires converting the inputs (8b->16b) to higher-precision and then
compute with a higher-precision accumulation (16-to-32-b widening dot product)

• ISA extension adding two 8-to-32-bit widening dot-products to limit the overhead

% 8-to-16-to-32b wDotp
fcvtl.h.b fa2, ft0
fcvtu.h.b fa3, ft0
fcvtl.h.b fa4, ft1
fcvtu.h.b fa5, ft1
wDotp.s.h fa0, fa2, fa4
wDotp.s.h fa1, fa3, fa5

% 8-to-16b wDotp
wDotp.h.b fa0, ft0, ft1

Recovery

BASELINE ISA EXTENDED ISA

% 8-to-32b wDotp
wDotpl.s.b fa0, ft0, ft1
wDotpu.s.b fa1, ft0, ft1L

o
o
p

L
o
o
p

L
o
o
p

Mixed Precision Widening Operations

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 20

SIMD wDotp.u8-to-32: acc32 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32 fa0FP32FP32

64 bits

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

FP8FP8FP8FP8

FP8FP8FP8FP8

××××

• 8-to-32-bit wDotp
• 8 FLOP/cycle/FPU

• Computed on the two 16-to-32 wDotp units

SIMD wDotp8-to-16: acc16 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32FP16FP16

64 bits

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

FP32FP16FP16

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

××××××××

• 8-to-16-bit wDotp
• 16 FLOP/cycle/FPU

fa0

SIMD wDotp.l8-to-32: acc32 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32 fa0FP32FP32

64 bits

FP8FP8FP8FP8FP8FP8FP8FP8

FP8FP8FP8FP8FP8FP8FP8FP8

+ +

++

××××

Mixed Precision Widening Operations

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 21

SIMD wDotp.u8-to-32: acc32 += a8 × b8 + c8 × d8

ft0

ft1

FP32 FP32 fa0FP32FP32

64 bits

FP8FP8FP8FP8

FP8FP8FP8FP8

+ +

++

FP8FP8FP8FP8

FP8FP8FP8FP8

××××

• 8-to-32-bit wDotp
• 8 FLOP/cycle/FPU

• Computed on the two 16-to-32 wDotp units

• Two instructions to process the
upper and lower parts of the inputs

Overflow Recovery Routine

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 22

wDotp

FP8 → FP16

Overflow?

Result Cast

FP16 → FP8

NO

wDotp

FP8 → FP32

Result Cast

FP32→ FP8

Overflow?
NO

Flush SSR

Re-program SSR

re-starting from

the latest iteration

YES

Matmul Start

Result Cast

FP32→ BF16

YES

Overflow recovery

Matmul

End

last

iteration

Program SSR

innermost

loop

innermost

loop

middle

loop

middle

loop

• Based on a set of checkpoints

• Overflow recovery routine:

• Rolls back

• Re-evaluate at higher precision the
portion between two checkpoints

• 8-to-32b wDotp
• Half the performance during the

re-evaluation

• Resume normal operation

Results

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 23

• Implemented the extended MiniFloat Snitch
cluster with Synopsys Fusion Compiler in a
12nm technology

• Less than 1% of area overhead to Snitch core

• On a 128x128 matmul, tuned the checkpoints
to achieve:

• 2% performance penalty in the absence of
overflow (overflow detection overhead)

• 3% performance penalty to detect and
recover one overflowing portion of code

• Computing the whole kernel with higher
precision accumulation would be 1.7x slower

2% 3%

Overhead

Fragile baseline

The 42nd IEEE International Conference on Computer Design (ICCD 2024) – 19.11.2024 24

Thank you!

pulp-platform.org@pulp_platform youtube.com/pulp_platform

Conclusions

• Extended a cluster of streaming RISC-V cores supporting low and
mixed-precision operations for efficient overflow recovery at less
than 1% area overhead at a RISC-V core level

• Devised an overflow recovery routine

• Showed that the checkpoints can be tuned to pay 3% of performance
for recovery one overflow which would otherwise be destructive

• 1.7x faster than computing always at higher precision

	Default Section
	Slide 1: Extending RISC-V for Efficient Overflow Recovery in Mixed-Precision Computations
	Slide 2: Low-Precision Floating-Point Formats
	Slide 3: Low and Mixed-Precision is Trending
	Slide 4: Low and Mixed-Precision is Trending
	Slide 5: SoA Overflow Detection and Reactions
	Slide 6: SoA Overflow Detection and Reactions
	Slide 7: SoA Overflow Detection and Reactions
	Slide 8: SoA Overflow Detection and Reactions
	Slide 9: Contributions
	Slide 10: Baseline System
	Slide 11: Baseline System
	Slide 12: Baseline System
	Slide 13: Baseline System
	Slide 14: Baseline System’s FPUs
	Slide 15: Higher-Precision Accumulation in SoA Architectures
	Slide 16: Higher-Precision Accumulation in SoA Architectures
	Slide 17: Overflow-Conditioned Branches for Low-Cost Detection
	Slide 18: Overflow-Conditioned Branches for Low-Cost Detection
	Slide 19: Mixed Precision for Efficient Overflow Recovery
	Slide 20: Mixed Precision Widening Operations
	Slide 21: Mixed Precision Widening Operations
	Slide 22: Overflow Recovery Routine
	Slide 23: Results
	Slide 24: Thank you!

