Multi-sensory Anti-collision Design for Autonomous Nano-swarm Exploration

Mahyar Pourjabar1, Manuele Rusci2, Luca Bompani3, Lorenzo Lamberti4, Vlad Niculescu3, Daniele Palossi3, Luca Benini13
1University of Bologna, Italy 2KU Leuven, Belgium 3ETH Zurich 4IDSIA, Switzerland

Contact author: mahyar.pourjabar2@unibo.it

Abstract

This work presents a robust design for swarm of palm-size nanodrones enabling autonomous exploration via obstacle avoidance, intra-swarm anti-collision and vision-based target detection capabilities fully aboard a highly resource-constrained robotic platform at less than 1W power budget. We combine lightweight single-beam laser ranging to avoid proximity collisions with a long-range vision-based obstacle avoidance deep learning model (i.e., PULP-Dronet) and an ultra-wide-band (UWB) based ranging module to prevent intra-swarm collisions.

Nanodrone Challenges

- Standard sized
 - Size [Ø, weight]
 - ≤5cm / ≤few Kg
 - Tot. Power
 - ≤100 W
 - Processing device
 - High-end CPU
 - Cognitive Capacity
 - Fully autonomous

- Next gen: nano/pico sized
 - Size [Ø, weight]
 - ≤few cm / ≤few g
 - Tot. Power
 - ≤SW
 - Processing device
 - Low-power MCU

- Laser-based obstacle avoidance
 - Fast but ineffective in cluttered environments
 - Vision-based obstacle detection
 - Effective but slow high comparison

- Need for a highly efficient and compact design suitable for nanodrone swarm [Architectures & Algorithms]

System Design

- UWB-based anchorless localization enables swarm agents to coordinate each other relatively and avoid colliding with each other during exploration

- Obstacle Detection
 - Categories
 - Bonding boxes
 - Confidence scores

- Intra-Swarm Collision Avoidance (ISCA)
 - 3D
 - Dronet

- Obstacle Collision Avoidance (OCA)
 - Distance Measures
 - PULP-Dronet [1]

- Exploration Policy
 - Finite State Machine

- Flight Control

RISC-V Dual-CNN architecture at 250kB Memory is a precise embedding of two deep-learning base algorithms handling obstacle detection and object detection in an interlinking process.

Sensor fusion and exploration policy continuously monitor sensing inputs and react accordingly based on the sensor-fusion algorithm.

Results

- Multi-modal sensing achieves 60%-70% boost in obstacle avoidance w.r.t the baseline i.e. SniffyBug [2]

- PULP-Dronet delivers optimal obstacles detection at 8 frame/second where ~82% collisions are detected.

- Multi-sensory system performs at >1W power budget

- Intra-swarm anti-collision unit achieves 92.8% accuracy

- Dual-CNN design operates at 250kB memory & 133mW power where GAP8 processor executes at 1.6FPS

Acknowledgement

This work has been partially funded by the Autonomous Robotics Research Center (ARRC) of the UAE Technology Innovation Institute (TII). We thank the Center for Research on Complex Automated Systems and, in particular, Andrea Testa and Lorenzo Pichieri for their support.

References