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Abstract— Decentralized and autonomous control of Un-
manned Aerial Vehicle (UAV) swarms is a key enabler for
cooperative systems and infrastructure-less formation flights.
However, UAVs often lack reliable heading angle measure-
ments, especially in indoor scenarios, space, and GNSS-denied
environments, posing an additional observability challenge on
range-based relative localization. We tackle this problem by
proposing a novel solution enhancing the classical tag-and-
anchor trilateration. The proposed solution relies on Ultra-
wideband range measurements and addresses the relative pose
estimation between pairs of UAVs under relative motion.
Furthermore, it does not require any explicit motion pat-
tern or initialization procedure and leverages an approximate
maximum-likelihood algorithm to recursively solve the relative
localization problem with constant computational complexity.
The method has been implemented and demonstrated through
field experiments, where a swarm of nano-UAVs positioned
themselves with respect to a leader in a nearly-static formation
with an average error of 38.5 cm and a convergence time of 25 s.
The achieved formation accuracy is similar to the one achieved
by the state-of-the-art EKF-based leader-follower methods.

I. INTRODUCTION

The collaboration of a swarm of robots can enhance the
capabilities of individual agents by harnessing collective
advantages. This cooperative approach aims to minimize la-
tency, enhance robustness, and increase adaptability, unlock-
ing new opportunities for achieving shared objectives [1].
Several tasks can be carried out effectively and at low latency
by a swarm of robots [2], such as cooperative mapping
and localization, object detection, and explorations. Agents
joining a cooperating swarm must remain operable in a
group [3], perceiving and communicating with neighbors
preferably without relying on external infrastructure [4],
[5]. Apart from common features like obstacle avoidance
and environmental perception [6], a swarm agent needs to
measure its relative location among other agents to han-
dle the formation and infer the optimal mission strategy
based on the neighbor’s position. Although the relative and
absolute location estimation of neighbors in a swarm is a
solved mathematical problem, existing methods often do not
satisfy today’s practical deployment requirements, lacking
robustness under non-ideal conditions such as high sensor
measurement noise [3], [5].
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A popular and lightweight solution for absolute and rel-
ative localization is based on Ultra-Wideband (UWB) radio
transceivers because of their relatively high accuracy in the
decimeter range without the support of external references
or infrastructure. UWB is particularly beneficial in several
challenging application scenarios [7], such as in Global
Navigation Satellite System (GNSS) denied environments,
space, and indoor navigation, where sensing limitations could
make the relative UAV position estimation unobservable [7],
[8]. One of the most common sensing limitations regards
the navigation heading: magnetometers, the most common
solution for measuring the absolute heading, heavily suffer
from magnetic distortions, e.g., due to ferromagnetic building
construction materials and electric motor currents [3], [5].

This work proposes an approach to enable the
infrastructure-less formation of a swarm of robots relying
on onboard inertial and odometry measurements, point-to-
point distance measurements among pairs of agents (based
on UWB), and wireless local data exchange. This work leads
to the development and field demonstration of a relative
localization algorithm that is independent of direct heading
measurements. The proposed solution is able to operate
with small relative motion solely originating from feedback
control fluctuations, enabling a near-static formation, not re-
quiring any explicit motion pattern or initialization. Collected
results on Nano Unmanned Aerial Vehicles (UAVs), char-
acterized by limited computational and sensing capabilities,
show a mean formation error of 38.5 cm and a convergence
time of 25 s even in the presence of noisy measurements.

In detail, the contributions of this paper are: (i) A novel
Relative Pose Estimation Method: The novel method pre-
sented in this paper improves over existing EKF-based meth-
ods [3], [5], [12] as it does not require initial calibrations.
Furthermore, the method finds a global optimum, and it
is robust to divergence. Moreover, a recursive formulation
enables the incorporation of an arbitrary number of expo-
nentially-weighted measurements over time at a maximum
rate of 250Hz. (ii) Optimized Trilateration Algorithm: A
key enabler for this work is a new trilateration algorithm
that solves an approximate maximum-likelihood trilateration
problem. We found that our method improves over the
popular differences of squares (DoS) [14] by eliminating
its typical large errors in short baseline scenarios [8], [15].
(iii) Static Formation Flight: Based on the relative pose
estimation method, a decentralized formation controller is
developed and demonstrated with practical experiments. The
formation showcases the robustness of the relative pose
estimation method. With a near-static formation, the swarm



TABLE I: Overview of formation flight and relative pose estimation methods.

Method Measurements
Bearing / Heading

Required motion Initialization Experiment

Nägeli et al. [9] Yes / Yes None Not reported 3 UAVs static formation (no leader)

Zhou et al. [10] No / No Random Five initial measurements UGV relative pose estimation

Wang et al. [11] No / Yes Manual control None UAV relative pose estimation

Guo et al. [12] No / Yes Piece-wise linear EKF initial measurements 3 UAVs relative motion

Coppola et al. [3] No / Yes Collision avoidance EKF initial values predefined 3 UAVs collision avoidance

Helm et al. [5] No / No Trajectory EKF initial values predefined UAV leader-follower (time offset)

Li et al. [4] No / No Trajectory EKF initial values determined 5 UAVs leader-follower

Güler et al. [13] Yes / No Sinusoidal leader None 2 UAVs static formation (with leader)

Our work No / No None (static leader) None 5 UAVs static formation (with leader)

was able to operate on the boundary of observability since
all relative motion between the robots originates from sensor
and actuator noise as well as the resulting estimation and
control inaccuracies. We provide code and further details on
our algorithms on GitHub 1.

II. RELATED WORK

Decentralized relative localization is a well-known prob-
lem in robotics swarm operations, from ground vehicles [10]
to aerial multi-copters [3], [5], [9], [11]–[13], [16]. Many
different techniques have been proposed over time, employ-
ing various types of sensors, from GPS [16] to vision-
based approaches [9] and radio ranging solutions [3], [5],
[11]–[13]. Addressing this problem with GPS limits its
applicability to outdoor applications, like in [16], where the
authors addressed the problem of static formation control on
drone swarms. Vision-based algorithms represent an appeal-
ing alternative, such as [9], where the authors addressed the
problem of relative position estimation. Although, camera-
based systems suffer from image processing computational
requirements (not always met by processors aboard the
robot), limited field of view, and occlusions.

In contrast, our work focuses on radio ranging which
typically employs omnidirectional radio sources such as
Bluetooth [3] or UWB [4], [5], [12], [13]. In the latter
case, Angle of Arrival (AoA) methods can provide direc-
tional information from the phase differences of multiple
antennas [17], angle-dependent variations of the channel
impulse response [18], or by using multiple UWB trans-
mitters [13]. When AoA is not employed [5], [11], [12],
directional information can be retrieved by communicating
state information computed locally, e.g., the odometry of
the robot, or by estimating relative localization from range
measurements and the relative motion between nodes. In
these cases, the system’s observability plays a crucial role.
Results from [10] show how ground vehicle observability in
2D relative localization is possible only if the relative motion
is constrained. Similarly, in [4], [5], the authors show how
the lack of a common heading reference (e.g., the north of
a magnetometer) strongly impacts the achievable accuracy.

Various methods have been proposed for ranging-based
relative localization of UAVs without directional informa-

1https://github.com/ETH-PBL/swarm-relative-localization

tion, such as particle filter variations [13], moving horizon
estimation with convex optimization [11], and EKF-based
approaches [3], [5], [12]. This last group is a compelling
alternative due to its low computational and memory require-
ments compared to moving horizon methods [11], which suf-
fer from high computational costs for large moving horizon
windows. Authors in [5] propose a solution for the relative
localization of UAVs without common heading reference.
The authors designed an EKF-based relative localization
algorithm and integrated it into a leader-follower swarm
control system. Their results are particularly interesting for
indoor UAVs where magnetometer measurements are not
reliable or available, such as in [3], where the heading is
estimated using gyroscope integration only.

However, EKF-based approaches need good initial values
to converge, which is not available for many practical appli-
cations [4], [5], [12]. Therefore, this work presents a novel
method that improves over existing EKF-based solutions [3],
[5], [12] by not requiring any initial values and heading
measurements. Our method finds the global optimum, show-
ing robustness to divergence and inconsistency, similar to
the moving horizon estimation [11]. Finally, a recursive
formulation enables the incorporation of an arbitrary number
of exponentially-weighted measurements over time. In Ta-
ble I, we report an exhaustive comparison of the formation
flight and the pose estimation methods of the aforementioned
works w.r.t. the proposed one.

III. ALGORITHMS

A. An Approximative Maximum-Likelihood Trilateration

Trilateration is a method to determine the position of
a static or mobile object given its distance from a set of
stationary locations with known positions (i.e., anchors).
Due to its good trade-off between accuracy and compu-
tational demands, trilateration was used in many localiza-
tion applications [8], [15]. The mathematical formulation
of the trilateration is expressed with the following notation:
{dk}nk=1 are the distances from each of the n anchors with
known coordinates

{
pANCHOR,k

}n
k=1

as shown in Figure 1.
If noise-free range measurements are assumed, then finding
the UAV’s position comes down to finding intersections of
circles (2D) or spheres (3D), requiring at least 3 or 4 anchors,
respectively [8]. However, in real-world applications, range



Fig. 1: In the classical trilateration problem, the position of a UAV is
computed based on range measurements {d1, . . . , dn} to n anchors of
known locations.

measurements are affected by noise, and therefore the clas-
sical geometrical methods lead to a poor localization accu-
racy [8]. Under the assumption of zero-mean Gaussian noise
on the range measurements, the maximum-likelihood (ML)
estimate of the UAV’s position pUAV is found by minimizing
the sum of the squared ranging error residuals [15], as shown
in Equation 1. We note as wk the noise corrupting the range
measurements.

pML
UAV = argmin

pUAV

n∑
i=1

∥∥pUAV − pANCHOR,i

∥∥− di︸ ︷︷ ︸
wi


2

(1)

In the following, we propose an algorithm that tackles the
optimization problem of Equation 1 and then we show how it
can be further extended to address the UAV relative localiza-
tion problem in real-world scenarios. Thus, the optimization
problem is rewritten from Equation 1 by introducing an
equality constraint for wi, as shown in Equation 2.

pML
UAV = argmin

pUAV

n∑
i=1

w2
i (2)

s. t. wi = di − ∥pUAV − pi∥

In order to derive an approximation to the ML cost function,
we consider the unit length vectors {ei}ni=1 in the range
measurement directions,

ei(di − wi) = pUAV − pi (3)

Consequently, for two anchors i and j holds

ej(dj − wj) = ei(di − wi) + pi − pj (4)

Taking the squared norm on both sides, it expands to

d2j − 2 djwj + w2
j = d2i − 2 diwi + w2

i

+ 2 (di − wi) e
T
i

(
pi − pj

)
+
∥∥pi − pj

∥∥2 (5)

Assuming |wi| ≪ |di|, the approximation −2 diwi + w2
i ≈

−2 diwi holds. Applying this approximation for i and j and
defining

di := (di − wi) ei = pUAV − pi (6)

yields

wj = dT
i

(
pj − pi

)
dj

+ wi
di
dj

−
∥∥pj − pi

∥∥2 + d2i − d2j
2 dj

(7)

We approximate the objective function of Equation 2 with the
approximation from Equation 7 and note that the resulting
objective is a function of wi and di only where i is the index
of an arbitrarily chosen anchor. The constraint of Equation 2
for wj and j ̸= i are trivial to satisfy because the objective
function of the approximate problem does not depend on
wj . Therefore, the corresponding constraints are dropped.
We state the approximation to Equation 2 explicitly as

pML
UAV ≈ pi + d∗

i (8)

and d∗
i being the solution to the approximate ML optimiza-

tion problem

d∗
i , w

∗
i = argmin

di,wi

f(di, wi) (9)

s. t. g(di, wi) = ∥di∥2 − (di − wi)
2
= 0

with the single quadratic equality constraint g(di, wi) and
the quadratic objective function f(di, wi).

f(di, wi) =

n∑
j=1

(
dT
i

(
pj − pi

)
dj

+ wi
di
dj

−
∥∥pj − pi

∥∥2 + d2i − d2j
2 dj

)2

(10)

To make a step forward towards solving the quadratic prob-
lem in Equation 9, we rewrite it in matrix form.

f(di, wi) =

(
di
wi

)T
 n∑
j=1

Qj


︸ ︷︷ ︸

Q

(
di
wi

)

− 2

 n∑
j=1

cTj


︸ ︷︷ ︸

c

(
di
wi

)
+

 n∑
j=1

ej


︸ ︷︷ ︸

e

(11)

with the following coefficients.

Qj =

 1
d2j

(
pj − pi

) (
pj − pi

)T di
d2j

(
pj − pi

)
di
d2j

(
pj − pi

)T d2i
d2j

 (12)

cj =

∥∥pj − pi
∥∥2 + d2i − d2j
2 d2j

(
pj − pi
di

)
(13)

ej =

(∥∥pj − pi
∥∥2 + d2i − d2j
2 dj

)2

(14)

In previous formulations, we show how the trilateration
problem is reduced to solving the constrained optimization
problem with the quadratic objective function f(di, wi)
given by Equation 10 and the equality constraint g(di, wi)
given in Problem 9. In the following, we show how to solve
this problem, and considering the case of a 3D Euclidean
space, we note di = (x, y, z)T. From the method of Lagrange



Fig. 2: The range-based relative localization problem.

multipliers, Equations 15 – 16 must hold for the solution to
the minimization problem.

0 =
1

2
(∇f(di, wi)− λ∇g(di, wi)) = Qλ

(
di
wi

)
− cλ

(15)
0 = g(di, wi) = x2 + y2 + z2 − w2

i + 2 diwi − d2i (16)

The matrix Qλ and the vector cλ are defined for simplicity
of the mathematical treatment and defined by Equations 17
– 18. The conditions are a non-linear equation system with
the five unknowns x, y, z, wi, and λ.

Qλ := Q+


−λ 0 0 0
0 −λ 0 0
0 0 −λ 0
0 0 0 λ

 (17)

cλ := c+
(
0 0 0 diλ

)T
(18)

In a first step, the sub-system Qλ

(
dT
i wi

)T
= cλ is solved

with Cramer’s rule. We note as DETx(λ), DETy(λ), DETz(λ),
and DETwi(λ) the determinants of the matrices obtained
by replacing the first, second, third and fourth column of
Qλ with cλ, respectively. From Cramer’s rule, the solution
(i.e., x, y, z and wi) is obtained by dividing each of the
introduced determinants by DETQλ

(λ). All determinants are
polynomials in λ of degree ≤ 4, and therefore each solution
depends on λ. Inserting the solution from Cramer’s rule into
Equation 16 yields a polynomial of degree eight as shown
in Equation 19. The real roots of the resulting polynomials
are candidates for the optimal Lagrange multiplier. With
back-substitution into Cramer’s solutions, a candidate for the
complete solution is found. Finally, the optimal solution is
found by checking the objective function with each candi-
date. Polynomial roots can be computed efficiently with a
numerical Eigenvalue solver.

DETx(λ)
2 + DETy(λ)

2 + DETz(λ)
2 − DETwi

(λ)2+ (19)

2 di DETwi
(λ) DETQλ

(λ)− d2i DETQλ
(λ)2 = 0

B. Range-based Relative Pose Estimation of UAVs

Section III-A presented a solution for determining the po-
sition of a UAV, by knowing the distances to known-position
anchors. In this section, we consider an adapted scenario
that only considers two moving UAVs (i.e., no anchor) and
attempts to find their relative position and heading (i.e.,
pose). The two UAVs, i and j, are assumed to be moving

simultaneously with velocities vi(t) and vj(t) such that they
obtain the positions pi(t) and pj(t). At discrete time steps
tk, k ∈ {1, . . . , N}, range measurements dij(tk) are taken
between drone i and j. We assume that each drone can
estimate its own velocity from its onboard state estimator.
Furthermore, we assume that drone i continuously receives
the velocity and distance measurements from drone j and
vice-versa. Figure 2 shows an illustration of the scenario.
From the elementary laws of motion, the equation pi(tk) =
pi(tN )−

∫ tN
tk

vi(τ) dτ holds. Writing this equation for two
drones and computing the difference allows formulating the
ML estimation problem that is given in Equation 20, where
dij(t) = pj(t) − pi(t) is the relative position of the two.
We highlight the similarity of Equation 2 with Equation 20,
where the relative position dij(t) takes the role of UAV’s
position, and the integral takes the role of the anchor’s
position. This similarity is important because we can use
the same method described in Section III-A to solve the
optimization problem in Equation 20. However, note that
while Equation 2 sums over all anchors i, in Equation 20, the
sum is performed over all discrete time steps of a relative
localization scenario defined by the timestamps k, while i
and j are fixed because the relative position is determined
for two drones at a time.

dML
ij (tN ) = argmin

dij(tN )

N∑
k=1

w2
k (20)

s. t. wk = ∥dij(tN )−
∫ tN

tk

vj(τ)− vi(τ) dτ∥ − dij(tk)

The scenario described so far assumes both drone i and j
are aligned within the same gravity-aligned coordinate frame,
and so are the velocity measurements vi and vj . However,
in the real world, the UAVs do not have any means of
performing absolute heading measurements, and the heading
is only estimated by integrating the angular velocity over
time (typically provided by gyroscopes). Therefore, factors
such as different heading angles at take-off or gyroscope
drift can result in a significant misalignment between the
coordinate frames of the drones. To account for this, we
note as Li and Lj the gravity-aligned coordinate frames of
drones i and j, respectively, and introduce the transformation
matrix between the two coordinate frames TLiLj (t), defined
by the z-axis rotation matrix for the angle ψij . ψij(t) is the
relative heading angle, and ψ̇ij(t) is its rate of change, which
is unknown but very small.

Each UAV i ∈ {1, . . . , n} is capable of onboard velocity
measurements Li

vi(t) in its local coordinate frame. This
velocity allows obtaining the local position displacement
from time tk to tN , which we note as ρi,k :=

∫ tN
tk Li

vi(τ) dτ
to simplify the notation. In the following, we rewrite Equa-
tion 20 so that it accounts for the different coordinate frames
and the relative rotation between those. The final form of the
pair-wise pose estimation problem is given in Equation 21. In
the formula, TLiLj is assumed constant although is exhibits
yaw drift in reality. The odometry constraints given by ρi,k,
ρj,k also exhibit drift. To accommodate these two effects,



the formula has an exponentially decaying weighting of old
measurements with a time constant τ .

Li
d̂ij,N , T̂LiLj ,N = argmin

N∑
k=1

e−
tN−tk

τ w2
k (21)

s. t. wk =
∥∥
Li
dij,N + ρi,k − TLiLj

ρj,k
∥∥− dij,k

C. Recursive Solution for the Relative Pose Estimation
In the following, we propose a solution to solve the

complete relative localization problem given in Equation 21.
Since the goal is to determine both relative position and
heading, we refer to this as the relative pose estimation,
which is the ultimate goal of this work. Therefore, we
propose solving the optimization problem in Equation 21
by firstly solving for dij,N and then for ψij as shown in
Equation 22. We propose solving the outer optimization
problem by performing an exhaustive search over the full
range of possible relative heading angles.

min
ψij∈{0◦,..., 359◦}

(
min

Li
dij,N

N∑
k=1

e−
tN−tk

τ w2
k

)
(22)

Next, we solve the inner optimization problem by relying
on the approach from Section III-A. We provide an equiv-
alent formulation to Problem 21 where the odometry con-
straint is formulated recursively and note TLiLj

as T (ψij).

Li
d̂ij,k(ψij), ŵij,k(ψij) = argmin

Li
dij,k,wij,k

N∑
k=1

e−
tk+1−tk

τ w2
k

(23)
s. t. wk = ∥Li

dij,k∥ − dij,k

Li
dij,k+1 = Li

dij,k +

∫ tk+1

tk

T (ψij) Lj
vj(τ)− Li

vi(τ) dτ

Approximating the odometry constraint (i.e., the second one)
with the Euler forward integration of the relative position
Li
dij leads to Equation 24. We note ∆t = tk+1 − tk.

Lidij,k+1 = Lidij,k −
(
Livi,k − T (ψij) Ljvj,k

)
∆t︸ ︷︷ ︸

uk(ψij)

(24)

For a recursive formulation of Problem 23, we denote the
objective function of the time step k as fk(dij,k, wij,k, ψij).
For time step k+1 a new range measurement dij,k is consid-
ered, augmenting the optimization problem to Equation 25.

min fk(dij,k, wij,k, ψij) e
−

tk+1−tk
τ + w2

ij,k+1 (25)

s. t. ∥dij,k∥2 = (dij,k − wij,k)
2

∥dij,k+1∥2 = (dij,k+1 − wij,k+1)
2

In order to make the recursion in Problem 25 mathematically
tractable, the same approximation and matrix formulation
as in the trilateration case are applied. With the affine
approximation from Equation 7, we derive

wij,k =
uk(ψij)

T

dij,k
Li
dij,k+1 +

dij,k+1

dij,k
wij,k+1

−
∥uk(ψij)∥2 + d2ij,k+1 − d2ij,k

2 dij,k
(26)

We substitute wij,k from Equation 26 and Li
dij,k from

Equation 24 into the recursive objective function from Equa-
tion 25. Consequently, we obtain an objective function of
the same form as Equation 11, with the mention that Q,
c and e now depend on the time index k and angle ψij .
We mention that the first constraint of Equation 25 is inde-
pendently satisfied by the objective function and therefore
can be discarded. In conclusion, we showed how the relative
localization is reduced to the same mathematical problem as
the trilateration and therefore solved using the solution given
in Section III-A. However, in this case the matrices Q, c and
e have different values, and we give then in Equations 27 –
31. To simplify the notation, we omitted the dependency on
the angle ψij .

Qk+1 =

(
0 0
0T 1

)
+ e−

tk+1−tk
τ

(
AT
k QkAk

)
(27)

cTk+1 = e−
tk+1−tk

τ

(
cTkAk + bTkQkAk

)
(28)

ek+1 = e−
tk+1−tk

τ

(
ek + bTkbk

)
(29)

where Ak and bk are the linear transformation from Equa-
tions 24 and 26 in matrix form.

Ak =

(
I 0

uk(ψij)
T

dij,k

dij,k+1

dij,k

)
(30)

bk =

(
uk(ψij)

−∥uk(ψij)∥2+d2ij,k+1−d
2
ij,k

2 dij,k

)
(31)

The elements of the matrices Q, c and e depend quadratically
on T (ψij). We omit a full presentation of the component-
wise heading angle dependent recursion for the sake of space.

D. Decentralized Control

Since the focus of this work lies on relative pose estima-
tion within a swarm formation, a heuristic control method is
applied. Each UAV computes a target position displacement
∆p∗

i , supposed to unilaterally decrease the formation error.
A static feedback law then yields a target velocity Li

vCMD,i

from a proportional controller with gain kxy = 1 for the
horizontal and kz = 0.5 for the vertical components. The
norm of the 3D velocity control output is further saturated
to vSAT = 0.3ms−1.

The computation of the target position displacement ∆p∗
i

is done in two steps. First, a yaw angle transformation
T ∗
LiF of the formation is found such that UAV i’s estimates

of the other UAVs’ relative positions best align with the
desired formation. In a second step, given T ∗

LiF , the target
position displacement ∆p∗

i is found as in Equation 32, where
∆f,ij =F f j − Ff i and Ff i is the target position of drone
i expressed in the formation frame.

∆p∗
i = argmin

∆pi

1

2

n∑
j=1,j ̸=i

∥∥∥Li d̂ij −∆pi − T ∗
LiF ∆f,ij

∥∥∥2
(32)

Applying this control law could cause the whole swarm to
drift rapidly. As a countermeasure, we chose to have drone 0
as a leader, which does not apply any control action. Instead,



it hovers over the take-off location, relying on local odometry
measurements so that the swarm is “anchored” by the leader.

IV. EXPERIMENTAL RESULTS

The algorithms presented in this paper are practically
implemented and evaluated on a swarm of five nano-UAVs –
i.e., UAVs that weigh below 50 g and measure about 10 cm,
however, the solution can be adopted for UAVs of every
size. Specifically, we use the commercial Crazyflie nano-
UAV platform from Bitcraze, which is open source, so the
proposed solution can be implemented and evaluated.

A. Experimental Setup and Implementation

Each nano-UAV is equipped with a FlowDeck v2 that
enables velocity measurements and a Loco positioning deck
that allows to acquire UWB range measurements. We imple-
ment a double-sided two-way-ranging [19] that involves two
agents (i.e., nano-UAV) at a time and typically requires three
UWB messages to obtain the range. Since only one agent
gets to compute the range out of the UWB timestamps, we
also send an additional fourth data message containing the
range to the second agent – so both agents have an estimation
of the point-to-point distance. In our ranging scheme, UAV 0
does ranging with UAVs 1−4, then UAV 1 does ranging with
UAVs 2 − 4, and so on. After the last ranging (i.e., UAV 3
with UAV 4), the process is restarted from UAV 0.

Asynchronously, each UAV sends the ranges it acquired
along with its estimated velocity and heading at a rate of
10Hz to the computer in the loop. The UAVs are resource-
constrained, and they can not carry the computation onboard.
Thus, the computer runs the relative localization and forma-
tion control algorithms previously introduced. Furthermore,
at a rate of 10Hz, it sends back the control information to
the swarm UAVs so that they move in the desired formation.

To perform a quantitative evaluation of our algorithms,
we use a Vicon Vero 2.2 motion capture system (mocap).
We specifically selected the Crazyflie platform because it
is characterized by miniaturized low-power sensors, which
typically provide poorer accuracy than their standard-size
counterparts. Proving the effectiveness of our solutions with
such a challenging setup demonstrates the functionality also
with the more capable UAV platforms.

B. Experimental Results

We evaluate the performance of the relative localization
solution proposed in Section III-B and the formation control
algorithm proposed in Section III-C. To assess the relative
localization error, we use the metric given in Equation 33,
where Li

d̂ij is the estimated relative localization vector. Note
that a UAV i measured the relative position of a UAV j in its
local gravity-aligned coordinate frame Li. Since the ground
truth is provided by the mocap, we firstly rotate the estimated
relative position into the mocap’s frame (using T̂MLi ) and
then compute the difference w.r.t. the ground truth – Mpi is
the measured position vector of UAV i.

ERROR(Li
d̂ij) =

∥∥∥T̂MLi Li
d̂ij −

(
Mpj −Mpi

)∥∥∥ (33)

(a) (b)

Fig. 3: Ground truth trajectories of the swarm for the two experiments. (a)
in the first experiment, the swarm convergence is assessed with offset initial
positions. (b) the stability of the swarm under a minimum of observability-
aiding motion is assessed in the second experiment. UAV 0 is the leader.
Take-off positions are marked with o and landing positions with x.

In the following, we also provide an evaluation metric for
formation control error, which assesses the performance of
the whole relative estimation and control loop. We define
as Ff i the target position in the formation expressed in a
gravity-aligned formation frame. We recall that UAV 0 is
the leader, so the formation control error is expressed w.r.t.
it. We define as M f̄ = Mp0−TMF Ff1 the offset between
the mocap frame and the formation frame for the leader UAV,
where TMF is the transformation matrix from the formation
frame to the mocap frame. Therefore the formation control
error for one UAV i is defined by Equation 34, quantifying
how far a UAV is from its target position in the formation.

ERROR(Mpi) =
∥∥
Mpi − TMF Ff i −M f̄

∥∥ (34)

In the first experiment, we evaluate the swarm’s capability
of going into a predefined formation, assessing the system
convergence time and the formation errors. Each of the five
UAVs starts from a position that is significantly off from the
target position (i.e., about 1m – 2m) in the formation and is
chosen so that there is no collision with the other UAVs while
reaching the final position. The target formation is defined
by a square, where each of the UAVs 1 – 4 has to reach a
vertex, while UAV 0 is the center of the square, as shown
in Figure 3-(a). To have a closer look at the functionality
of the relative localization algorithm, we present the time
evolution of the relative positions between UAV 1 and the
other UAVs. The results are given in Figure 4, showing
both the 3D position and the heading. Due to the space
limitation, this paper only presents the estimates of UAV
1, but the results are similar for all other UAVs. One can
note that all position estimates converge to a steady value
after about 25 s. The convergence is slowed down by poor
observability in the near-static formation and by the range
measurement noise. The relative localization error averaged
over the experiment time is in the range 73 cm – 90 cm for
each of the four UAVs, with a mean of 78 cm. Furthermore,
if we exclude the convergence time from the calculation, the
mean becomes 55.5 cm. Excluding the convergence phase,
the mean heading estimation error has a value of 24◦ –
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Fig. 4: Relative pose estimation errors for UAV 1 in the first swarm
experiment. The convergence time is considered 25 s.

averaged among all nano-UAVs. For 2 – 4, the heading error
tends to stay bounded within ±30◦. However, the results are
worse for the relative heading of the nano-UAV 0, due to
low observability since it is not moving.

In the following, we evaluate the formation control error,
which also considers the performance of the formation
control algorithm. Figure 5 shows the formation error curves
for each UAV. Since UAV 0 is the leader, its formation error
is 0m. Averaging over the experiment time and all non-leader
UAVs, the formation control error is 47.5 cm and 38.5 cm for
the cases with and without the convergence time.

In the second experiment, the UAVs take off already in
perfect formation. Thus, the goal is to assess the swarm’s
stability without any stimulated motion that could potentially
aid the observability of the relative poses. The trajectories of
the UAVs are shown in Figure 3-(b). The relative position
error averaged over the experiment time (for d1,0 – d1,4) is in
the range 51 cm – 99 cm, with a mean of 61 cm. Furthermore,
the mean heading error is 25◦, and the mean formation
control error is 41.5 cm. Figure 3-(b) shows that although
the drones manage to keep the formation throughout the ex-
periment, the formation frame rotates w.r.t. the mocap frame.
This happens because the drones are mainly stationary, and
therefore their heading angle becomes unobservable.

Fig. 5: Formation control errors of the non-leader UAVs in the first
experiment. The mean formation error is 47.5 cm.

V. DISCUSSION

A. Error Sources in the Relative Localization

The relative pose estimation takes UWB range measure-
ments and velocity measurements as inputs, which are both
affected by non-negligible errors. Integrating the velocity
measurement error throughout the performed experiments
results in an average of about 50 cm. However, the odometry
error is not easy to model as it mainly relies on an optical
flow sensor and depends on many factors, such as moving
velocity, acceleration, or ground texture [20]. Moreover,
only the roll and pitch angles of the odometry frame are
observable, while the heading is estimated by relying only
on angular velocity integration. Therefore, the heading angle
is subject to drift in all our experiments, where it was
empirically found to be below 3◦. With an assumed upper
bound of 3◦ on the heading drift and an upper bound on the
traveled distance of 2m, the odometry error due to heading
drift is bounded by sin (3◦/2) · 2m ≈ 10 cm.

Another error source comes from the UWB range mea-
surements. Due to multi-path, non-line-of-sight conditions,
and non-omnidirectional radiation patterns [19], UWB rang-
ing errors are notoriously hard to characterize. In our experi-
ments, we observed an average ranging error of about 10 cm.
Among the mentioned sources, odometry errors seem to have
the biggest impact on the UAV’s positioning accuracy.

B. Comparison with the SoA

The work presented in [5] tackles the relative localization
problem using the same sensor information as in this paper.
The formation control error obtained in our experiments (i.e.,
38.5 cm) is comparable to the one reported in [5], which
provides a mean error of 50.8 cm for their leader-follower
implementation with two UAVs. However, their EKF-based
method requires initial values, and incorrect settings can lead



to robustness issues. The work in [4] employs the same
hardware as in our work and extends the methods in [5] by
proposing an initialization procedure. They achieve a similar
accuracy to our work, but the initialization takes about 30 s,
resulting in a total time of 71 s for going in formation. In
contrast, our work requires 25 s for the same number of
drones. The relative localization accuracy depends on the
UWB ranging biases, which in [4] are reported to be smaller
than 5 cm due to their distance-based correction. However,
the ranging errors also depend on the UWB antennas’ relative
orientation, and therefore a distance-based only compensa-
tion will only be effective for specific orientations [19].

The authors in [5] and [4] apply a leader-follower for-
mation with observability-aiding dynamic trajectory and 2D
position estimation, while this paper focuses on a near static
formation with 3D position estimation; like our work, both
methods estimate the relative heading without absolute head-
ing measurement. In terms of robustness and convergence, in
comparison to the EKF-based methods [4], [5], our method
does not require initial values. Furthermore, because our
method finds a global optimum to the cost function, estimates
can quickly recover from wrong values that temporarily
misleading sensor data can cause (see Figure 4).

VI. CONCLUSION

This paper presented a relative pose estimation algorithm
that, in conjunction with a swarm control method, enables
near-static formation, practically evaluated on a swarm of
nano-UAVs with inter-UAV communication and ranging at a
rate of 250Hz. The robustness and accuracy of the proposed
approach have been demonstrated with practical experiments,
where the nano-UAVs draw the necessary motion for the
relative pose estimation solely from control inaccuracies.
With a mean formation error of 38.5 cm, the accuracy of our
method is comparable to the SoA EKF-based method of Van
der Helm et al. [5], while not relying on observability-aiding
motion or accurate initial values for the pose estimation.
Field results confirmed the ability of the relative pose es-
timation algorithm to cope with minimal relative motion and
noisy measurements. Formulating the relative localization
as an optimization problem makes our solution immune to
convergence issues observed with EKFs [5], [10], [12].
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