
PULP PLATFORM
Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Luca Benini <lbenini@iis.ee.ethz.ch,luca.Benini@unibo.it>

Paving the Road for RISC-V Supercomputers
with Open Hardware

Computing is Power Bound: HPC

HPC Performance 20MW budget
(fixed)

HPC: 10x every ~5 years
2

TOP500 9/22

Computing is Power Bound: ML

3

AI training: 10x every year!!!

Sevilla 22: arXiv:2202.05924, epochai.org

Machine Learning (training): 10x every 2 years

Largest datacenter <150MW

GPT-4 (OpenAI’23)
Training Compute: 2.1E+25 (FLOP)

Technology Scaling?
TSMC, ISSCC21

@ iso-area 1.24x power ↑

4
Energy Efficiency (𝟏𝟏

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏�𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏
) 10x every 12 years…

Efficient Architecture: Heterogeneous+Parallel
Decide Compute

<>
5

Heterogeneous + Parallel… Why?

6

 Today’s workloads are dominated by “Compute”:
 Tons of data, few (as fast as possible) decisions based on the computed values,
 “Data-Oblivious Algorithms” (ML, or better DNNs are so!)
 Large data footprint + sparsity

Compute (plough through numbers)
 Modulate flow of data
 Embarassing data parallel:
 Don’t think too much
 Plough through the data

(throughput is king)
 Few decisions

Lots of number crunching

Decide (jump to different program part)
 Modulate flow of instructions
 Mostly sequential decisions:
 Don’t work too much
 Be clever about the battles you pick

(latency is king)
 Lots of decisions

Little number crunching

How to design an efficient “Compute” fabric?

Decide Compute

Compute Efficiency: D (…and I) Movement is Key

7

Reg

RegFile

PE
core

L1

PE
core

PE
core

PE
core

PE
core

L0:Operand Memory
Latency=1
Density=1

Private

L1: Tightly Coupled DM
Latency<10
Density≈10

Shared

Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

L2

L2: Main Memory
Latency>100
Density≈100

Shared, Remote

From/To L1

DMA
From/To L2
& Others

PE: Snitch, a Tiny RISC-V Core
A versatile building block

8

 Simplest core: around 20KGE
 Speed via simplicity (1GHZ+)
 L0 Icache/buffer for low energy fetch
 Shared L1 for instruction reuse (SPMD)

 Extensible “Accelerator” port
 Minimal baseline ISA (RISC-V)
 Extensibility: Performance through ISA

extensions (via accelerator port)

 Latency-tolerant Scoreboard
 Tracks instruction dependencies
 Much simpler than OOO support!

L0
 IC

ac
he

Dependencies

Scoreboard

FP Stencil ML/TensorVector

F. Zaruba, F. Schuiki, T. Hoefler and L. Benini, "Snitch: A Tiny Pseudo Dual-Issue Processor for
Area and Energy Efficient Execution of Floating-Point Intensive Workloads," in IEEE
Transactions on Computers, vol. 70, no. 11, pp. 1845-1860, 1 Nov. 2021

Snitch PE: ISA Extension for efficient “Compute”

9

 How can we remove the Von Neumann Bottleneck?

 Targeting “compute” code

double sum = 0;
for (int i = 0; i < N; ++i) {
sum += A[i] * B[i];

}

fld ft0, 0(a1)
fld ft1, 0(a2)
addi a1, a1, 8
addi a2, a2, 8
fmadd.d fa0, ft0, ft1, fa0
bne a1, a3, -5

70 pJ
70 pJ
50 pJ
50 pJ
80 pJ
50 pJ

Memory access, operation, iteration control – can we do better?
Note: memory access (>1 cycle even for L1) need latency tolerance for LD/ST

Stream Semantic Registers
LD/ST elision

10

 Intuition: High FPU utilization ≈ high energy-efficiency

 Idea: Turn register read/writes into implicit memory
loads/stores.

 Extension around the core’s register file

 Address generation hardware

 Increase FPU/ALU utilization by ~3x up to 100%

 SSRs ≠ memory operands
 Perfect prefetching, latency-tolerant
 1-3 SSR (2-3KG/SSR)

Floating-point Repetition Buffer
Remove control flow overhead in compute stream

11

 Programmable micro-loop buffer

 Sequencer steps through the buffer,
independently of the FPU

 Integer core free to operate in parallel:
Pseudo-dual issue

 High area- and energy-efficiency

RISC-V ISA Extension for Target Workload
Mixed precision

12

Inference ≠ Training Quantization

 Inference: INT8 quantization is SoA

 Training: High dynamic range needed for
weights and weight updates

fp32 is still standard for DNN training
workloads. Low precision training with bf18
and fp8

Support a wide variety of FP formats and
instructions:

 Standard: fp64, fp32, fp16, bf16

 Low precision: fp8, altfp8
 fp8 (1-4-3): forward prop.
 altfp8 (1-5-2): backward prop.
 Exp. ops: accumulation

Efficient DNN inference & training

Cascade of EXFMAs vs EXSDOTP

13

Non-distributive FP addition Precision Loss

FPU SDOTPCascade of FMAs

 Fused EXSDOTP (i.e. lossless)
 Single normalization and rounding step
 Smaller area and shorter critical path
 Product by-pass to compute fused three-term

addition (vector inner sum)
 Stochastic rounding supported (+3% area)

EXFMA

EXFMA

EXSDOTP

DOTP=A*B+C*D+EDOTP=A*B+(C*D+E)

SSSR
Streamer

What About Sparsity? Indirect SSR Streamer

 Based on existing 3-SSR streamer
1. Extend 2 SSRs to ISSRs
2. Add index comparison unit between ISSRs
3. Forward result indices to 3rd SSR

14

TC
D

M
 S

cr
at

ch
pa

d

FPU
Subsystem

ft0 ft1

ft2

SSR 2

data

m
em

ISSR 0

data
m

em

ISSR 1
m

em
data

Index
comp.

idx idx

idx
idx

matched
/merged
indices

instr.
offload

SSSR
Streamer

What About Sparsity? Indirect SSR Streamer

 Based on existing 3-SSR streamer
1. Extend 2 SSRs to ISSRs
2. Add index comparison unit between ISSRs
3. Forward result indices to 3rd SSR

 Control interface to FPU sequencer (frep.s)
 Result index count unknown ahead-of-time

 Enables general sparse-sparse LA on fibers:
 dotp: index match + fmadd
 vadd: index merge + fadd
 elem-mul: index match + fmul
 vec-mac: index merge + fmadd

15

TC
D

M
 S

cr
at

ch
pa

d

FPU
Subsystem

ft0 ft1

ft2

SSR 2

data

m
em

ISSR 0

data
m

em

ISSR 1
m

em
data

Index
comp.

idx idx

frep.s
ctrl

idx
idx

matched
/merged
indices

instr.
offload

ISSR Performance Benefits

 Notable single-core speedups over RV
baseline
 CsrMV: up to 7.0× faster, 79% FP util.
 SpV+SpV: up to 9.8× faster / higher FP util.
 SpV∙SpV: up to 7.7× faster / higher FP util.
 VTI (3D stencil code): up to 2.9× faster, 78% FP util.

 Significant benefits in multicore cluster:
 CsrMV : up to 5.0× faster, 2.9x less energy
 CsrMSpV : up to 5.8× faster, 3.0x less energy
 VTI: up to 2.7× faster

 Notably higher peak FP utilizations than SoA
CPUs (69×), GPUs (2.8×) on CsrMV

16

0%

20%

40%

60%

80%

100%

0 15 30 45 60
timesteps

VTI FP utilization
(16b idcs, cluster)

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000
sparse nonzeros

SpVV FP utilization
(16b idcs, single

core)

ISSR Performance on Stencils
 Various 2D/3D stencils on 8-worker-core cluster
 FP64, 642/163 grid chunks, up to 4× unroll
 Tuned LLVM RV32G baseline vs ISSR-enhanced kernels

 Geomean 2.7× speedups, 82% FP utilization
 ISSR IPC consistently >1 as ISSRs

enable pseudo-dual-issue

 Baseline perf. degrades for large (3D) stencils
 Cannot maintain unroll and keep reusable

inner-loop data in register file
 ISSR streams avoid this bottleneck:

2.5× 2D 3.2× 3D geomean speedup

17

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ISSR speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
FP util. base FP util. ISSR IPC base IPC ISSR

Efficient PE (snitch) architecture in perspective

18

1. Minimize control overhead Simple, shallow pipelines
2. Reduce VNB amortize IF: SSR-FREP + SIMD (Vector processing)
3. Hide memory latency non-blocking (indexed) LD/ST+dependency tracking
4. Highly expressive, domain-specific instruction extensions (thanks, RISC-V!)

19

Reg

RegFile

PE
core

L1

PE
core

PE
core

PE
core

PE
core

L0:Operand Memory
Latency=1
Density=1

Private

L1: Tightly Coupled DM
Latency<10
Density≈10

Shared

Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

L2

L2: Main Memory
Latency>100
Density≈100

Shared, Remote

From/To L1

DMA
From/To L2
& Others

Compute Efficiency: the Cluster (PEs + On-chip TCDM)

The Cluster: Design Challenges

20

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

 Efficient PE
 Hide TCDM “residual” latency
 Remove Von Neumann Bottleneck

 Low latency access TCDM
 Multi-banked architecture
 Fast logarithmic interconnect

 Fast synchronization
 Atomics
 Barriers

High speed logarithmic interconnect
P1 P2 P3 P4

B2 B3 B4 B5 B6 B7 B8B1

Routing
Tree

Arbitration
Tree

Processors

Memory
Banks

N+1N N+2 N+3 N+4 N+5 N+6 N+7
N+8

World-level bank interleaving «emulates» multiported mem

21

@1GHz, 8-16 PEs, Latency: 2 cycles + stalls for banking conflicts

Do not underestimate on-chip wires…

Efficient Explicit Global Data Mover
hide L2main memory latency

22

 64-bit AXI DMA – explicit double-buffered
transfers – better than D$

 Tightly coupled with Snitch (<10 cycles
configuration)

 Operates on wide 512-bit data-bus

 Hardware support to copy 2-4-dim shapes

 Higher-dimensionality handled by SW

 Intrinsics/library for easy programming

 Domain-specific autotilers

Snitch
Core

DMA
Backend

DMA
Decoder

2D
Extension

Snitch Cluster Architecture

23

…

Logarithmic Interco

Snitch 0 Snitch 2 Snitch N Snitch
N+1

Multibanked L1 (BF>1)

Shared Instruction Cache

DIV

FPU FPU FPU DMA

SSR SSR SSR

FPU, 87.44

Miscellaneous,
25.26

ICACHE, 4.82

SSR/FREP,
9.52

Integer Core,
4.24

L1 Memory,
47.19

Where does the Energy go?

24

Integer core uses
2% of power

SSR/FREP hardware
uses 5% of power

FPU uses 50% of power

In an 8-core cluster
Inevitable to have local memory
(e.g., GPU/GPU L1 cache, vector register file)

Spending energy where it contributes to the result High Efficiency

Efficient Cluster architecture in perspective

25

1. Memory pool – efficient sharing of L1 memory
2. Fast and parsimonious synchronization
3. Data Mover + Double buffering – explicitly managed block transfers at the boundary
4. More cores and more memory per cluster… that would be nice!

Back to the cluster… Can we make it Bigger?

 Why?
 Better global latency tolerance if L1size > 2*L2latency*L2bandwidth (Little’s law + double buffer)
 Easier to program (data-parallel, functional pipeline…)
 Smaller data partitioning overhead

 An efficient many-core cluster with low-latency shared L1
 256+ cores
 1+ MiB of shared L1 data memory
 ≤ 10 cycles L1 latency (without contention)

 Physical-aware design
 WC Frequency > 500 Mhz
 Targeting iso-frequency with small cluster

26

MemPool

Hierarchical Physical Architecture

27

 Tile
 4 32-bit cores
 16 banks
 Single cycle memory access

 Group
 64 cores
 256 banks
 3-cycles latency

 Cluster
 256 cores
 1 MiB of memory (1024 banks)
 5-cycles latency

TopH: Butterfly Multi-stage Interconnect 0.3req/core/cycle

Core 0 Core 1 Core 2 Core 3

L0 I$ L0 I$ L0 I$ L0 I$

Shared L1 Instruction Cache

Interconnect

Scratchpad Memory

Bank
0

Bank
1

Bank
2

Bank
3

Bank
4

Bank
15

MemPool Tile MemPool Group

Tile
0

Tile
4

Tile
1

Tile
5

Tile
2

Tile
6

Tile
3

Tile
7

Tile
8

Tile
12

Tile
9

Tile
13

Tile
10

Tile
14

Tile
11

Tile
15

Local

North Northeast

East
MemPool Cluster

Group 0
Tile 0-15

Group 1
Tile 16-31

Group 2
Tile 32-47

Group 3
Tile 48-63

Can we push it further? Mempool Terapool

28

GF12 0.8V 16 Snitch/Tile, Multi-stage Interconnect 0.23 req/core/cycle
3 cycles 5 cycles 9 cycles

1024 Cores 4MB, 4096Banks!
69mm2, 3.8W, 900MHz 0.6TOPS (MMUL) @5nm: 23mm2, 2.2W, 1.2GHz, 1TOPS

4MB can hide a latency of 500ns for a BW of 4TBps
… need more? Terapool-3D

29

Reg

RegFile

PE
core

L1

PE
core

PE
core

PE
core

PE
core

L0:Operand Memory
Latency=1
Density=1

Private

L1: Tightly Coupled DM
Latency<10
Density≈10

Shared

Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

L2

L2: Main Memory
Latency>100
Density≈100

Shared, Remote

From/To L1

DMA
From/To L2
& Others

Compute Efficiency: the Chip(let) (Clusters+Off-die Mem)

Occamy: RISC-V goes HPC Chiplet!

30

HBM PHY

HBM2e DRAM
<410 GB/s

HBM DRAM

Simplified System Crossbar

HBM2e PHY
512 GB/s

512
b

512
b

512
b

512
b

512
b

512
b

512
b

512
b

Die-to-Die
Serial Link

64 GB/s

512
b

512
b

1MB SPM
512bit

512
b

512KB SPM
64bit

64b64b

64bit
CVA6
Host

• Runs Linux
• Peripheral Manager
• <1% traffic

System-
level DMA

64b 512
b

• Long & short bursts
• 1D & 2D patterns

Die-to-Die
Serial Link

8 GB/s

64b64b

Off-die
Serial Link

8 GB/s

64b64b

Multi-cluster Multi-core Accelerator
6 groups of each 4 clustersEach cluster has

8 compute cores + 1 DMA core

Total of 216x Snitch cores
with Multi-precision FPU (64 to 8)

Group-to-
Group

384 GB/s

• Long & short bursts
• 1D & 2D patterns

Periph

32b

• SPI
• I2C
• UART
• GPIO
• Timers

@1GHz
ZeroMem

8GB / 512bit

512
b

Occamy NoC: Efficient and Flexible Data Movement

31

Problem: HBM Accesses are
critical in terms of
 Access energy
 Congestion
 High latency

Instead reuse data on lower levels
of the memory hierarchy
 Between clusters
 Across groups

Smartly distribute workload
 Clusters: Tiling, Depth-First
 Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

Big trend!

High-Performance, General-Purpose
Our scalable architecture is general-purpose and high-performance

Peak chiplet performance @1GHz:
 FP64: 384 GFLOp/s
 FP32: 768 GFLOp/s
 FP16: 1.536 TFLOp/s
 FP8: 3.072 TFLOp/s

Preliminary measured results:
 Dense Kernels:

– GEMMS: ≥ 80% FPU utilization (also for SIMD MiniFloat)
– Conv2d: ≥ 75% PFU utilization (also for SIMD MiniFloat)

 Stencils Kernels: ≤ 60% FPU utilization

 Sparse Kernels: ≤ 50% FPU utilization
32

32
10.5mm

7.0 m
m

Cluster

Cluster

Cluster

Cluster

G
ro

up

G
ro

up

G
ro

up

G
ro

up

G
ro

up

G
ro

up

HBM Ctrl

Die-to-Die

C
VA 6

SP
M SPM

SP
MSP

M

Chiplet taped out: 1st July 22

Silicon Interposer: Hedwig (65nm, passive, GF)

 Interlocked die arrangement
 Prevent bending, increase stability

 Compact die arrangement
 No dummy dies or stitching needed

 Fairly low I/O pin count due to no high-
bandwidth periphery
 Off-package connectivity: ~200 wires
 Array of 40 x 35 (-1) C4s (total of 1’399 C4 bumps)
 Diameter: 400µm, Pitch: 650µm

 Die-to-Die: ~600 wires

 HBM: ~1700 wires

HBM DRAM 1Occamy 1

HBM DRAM 0 Occamy 0

Taped out: 15th of October 2022

33

Approaching 1T(DP)-FLOP
Dual Chiplet System Occamy:
 >430+ RV Cores
 0.8 T DP-FLOP/s (no overclocking)
 32GB of HBM2e DRAM
 Low tens of W (est.)

Aggressive 2.5D Integration

Carrier PCB:
 RO4350B (Low-CTE, high stability)
 52.5mm x 45mm

Industry partners are key (thanks)!

3434

Deep Learning
Models

Programming Occamy: DACE

35

X86

RISC-V

CUDA

FPGA

DaCeML frontend DaCe: Data-Centric Parallel Programming framework

GEMM, Convolution,
LayerNorm, Softmax, BatchNorm,

...

Library of optimized deep learning kernels

BERT

YOLOv5

...

SSR FREP DMA

DaCeML: Data-Centric Machine Learning

Highly expressive DSL family – high-level transformations, support for explicitly managed memory

Efficient Chiplet architecture in Perspective

36

1. Multi-cluster single-die scaling strong latency tolerance, modularity
2. NoC for flexible Clus2Clus, Clus2Mem, C2C traffic reduce pressure to Main memory
3. Top level NoC Routes to “local main memory” / “global main memory” balanced BW
4. Modular chiplet architecture: HBM2e, NoC-wrapped C2C, multi-chiplet ready

System Level: Monte Cimone, the first RISC-V Cluster

Designed for HPC “pipe cleaning”
37

Preparing for Occamy: Accelerator on PCIe cards

38

 Currently using FPGA-mapped “tiny Occamy”
 VCU128 with HBM

 Supporting hybrid usage
 Boot directly on standalone CVA6
 Do not boot and let the Host control the cluster
 HW probing by on-board device tree overlays

 High SW stack re-usability for both modes
 Same Linux drivers to map the cluster
 Same OpenMP offloading runtime

Conclusion
 Energy efficiency quest: PE, Cluster, SoC, System
 Key ideas
 Deep PE optimization extensible ISAs (RISC-V!)
 VNB removal + Latency hiding: large OOO processors not needed
 Low-overhead work distribution. Latency hiding large “mempool”
 Heterogeneous architecture host+accelerator(s)

 Game-changing technologies
 “Commoditized” chiplets: 2.5D, 3D
 Computing “at” memory (DRAM mempool)
 Coming: optical IO and smart NICs, swiches

 Challenges:
 High performance RV Host?
 RV HPC software ecosystem?

[AMD Naffziger ISCAS22]

[RIKEN Matsuoka MODSIM22] 39

http://pulp-platform.org @pulp_platform

Luca Benini, Alessandro Capotondi, Alessandro Ottaviano,
Alessandro Nadalini, Alessio Burrello, Alfio Di Mauro,
Andrea Borghesi, Andrea Cossettini, Andreas Kurth, Angelo
Garofalo, Antonio Pullini, Arpan Prasad, Bjoern Forsberg,
Corrado Bonfanti, Cristian Cioflan, Daniele Palossi, Davide
Rossi, Davide Nadalini, Fabio Montagna, Florian Glaser,
Florian Zaruba, Francesco Conti, Frank K. Gürkaynak,
Georg Rutishauser, Germain Haugou, Gianna Paulin,
Gianmarco Ottavi, Giuseppe Tagliavini, Hanna Müller,
Lorenzo Lamberti, Luca Bertaccini, Luca Valente, Luca
Colagrande, Luka Macan, Manuel Eggimann, Manuele
Rusci, Marco Guermandi, Marcello Zanghieri, Matheus
Cavalcante, Matteo Perotti, Matteo Spallanzani, Mattia
Sinigaglia, Michael Rogenmoser, Moritz Scherer, Moritz
Schneider, Nazareno Bruschi, Nils Wistoff, Pasquale Davide
Schiavone, Paul Scheffler, Philipp Mayer, Robert Balas,
Samuel Riedel, Sergio Mazzola, Sergei Vostrikov, Simone
Benatti, Stefan Mach, Thomas Benz, Thorir Ingolfsson, Tim
Fischer, Victor Javier Kartsch Morinigo, Vlad Niculescu,
Xiaying Wang, Yichao Zhang, Yvan Tortorella, all our past
collaborators and many more that we forgot to mention

Want to use the stuff?
You can!
Free, open source
With liberal (apache) license!

	Slide Number 1
	Computing is Power Bound: HPC
	Computing is Power Bound: ML
	Technology Scaling?
	 Efficient Architecture: Heterogeneous+Parallel
	Heterogeneous + Parallel… Why?
	Compute Efficiency: D (…and I) Movement is Key
	PE: Snitch, a Tiny RISC-V Core�A versatile building block
	Snitch PE: ISA Extension for efficient “Compute”
	Stream Semantic Registers�LD/ST elision�
	Floating-point Repetition Buffer�Remove control flow overhead in compute stream
	RISC-V ISA Extension for Target Workload�Mixed precision
	Cascade of EXFMAs vs EXSDOTP
	What About Sparsity? Indirect SSR Streamer
	What About Sparsity? Indirect SSR Streamer
	ISSR Performance Benefits
	ISSR Performance on Stencils
	Efficient PE (snitch) architecture in perspective�
	Slide Number 19
	The Cluster: Design Challenges
	High speed logarithmic interconnect
	Efficient Explicit Global Data Mover�hide L2main memory latency
	Snitch Cluster Architecture
	Where does the Energy go?
	Efficient Cluster architecture in perspective�
	Back to the cluster… Can we make it Bigger?
	Hierarchical Physical Architecture
	Can we push it further? Mempool Terapool
	Slide Number 29
	Occamy: RISC-V goes HPC Chiplet!
	Occamy NoC: Efficient and Flexible Data Movement
	High-Performance, General-Purpose
	Silicon Interposer: Hedwig (65nm, passive, GF)
	Approaching 1T(DP)-FLOP
	Programming Occamy: DACE
	Efficient Chiplet architecture in Perspective�
	System Level: Monte Cimone, the first RISC-V Cluster
	Preparing for Occamy: Accelerator on PCIe cards
	Conclusion
	Slide Number 40

