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Computing is Power Bound: HPC

HPC Performance 20MW budget 
(fixed)

HPC: 10x every  ~5 years 
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TOP500 9/22



Computing is Power Bound: ML
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AI training: 10x every year!!! 

Sevilla 22: arXiv:2202.05924, epochai.org

Machine Learning (training): 10x every 2 years 

Largest datacenter <150MW

GPT-4 (OpenAI’23)
Training Compute: 2.1E+25 (FLOP)



Technology Scaling?
TSMC, ISSCC21

@ iso-area 1.24x power ↑
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Energy Efficiency ( 𝟏𝟏

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏�𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏
) 10x every 12 years…



Efficient Architecture: Heterogeneous+Parallel
Decide Compute

<>
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Heterogeneous + Parallel… Why?
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 Today’s workloads are dominated by “Compute”:
 Tons of data, few (as fast as possible) decisions based on the computed values, 
 “Data-Oblivious Algorithms”  (ML, or better DNNs are so!)
 Large data footprint + sparsity

Compute (plough through numbers)
 Modulate flow of data
 Embarassing data parallel:
 Don’t think too much
 Plough through the data

(throughput is king)
 Few decisions

Lots of number crunching

Decide (jump to different program part)
 Modulate flow of instructions
 Mostly sequential decisions:
 Don’t work too much
 Be clever about the battles you pick

(latency is king)
 Lots of decisions

Little number crunching

How to design an efficient “Compute” fabric?

Decide Compute



Compute Efficiency: D (…and I) Movement is Key
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PE: Snitch, a Tiny RISC-V Core
A versatile building block
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 Simplest core: around 20KGE
 Speed via simplicity (1GHZ+)  
 L0 Icache/buffer for low energy fetch
 Shared L1 for instruction reuse (SPMD)

 Extensible “Accelerator” port
 Minimal  baseline ISA (RISC-V)
 Extensibility: Performance through ISA 

extensions (via accelerator port)

 Latency-tolerant Scoreboard
 Tracks instruction dependencies
 Much simpler than OOO support!

L0
 IC

ac
he

Dependencies

Scoreboard

FP Stencil ML/TensorVector

F. Zaruba, F. Schuiki, T. Hoefler and L. Benini, "Snitch: A Tiny Pseudo Dual-Issue Processor for 
Area and Energy Efficient Execution of Floating-Point Intensive Workloads," in IEEE 
Transactions on Computers, vol. 70, no. 11, pp. 1845-1860, 1 Nov. 2021



Snitch PE:  ISA Extension for efficient “Compute” 
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 How can we remove the Von Neumann Bottleneck?

 Targeting “compute” code

double sum = 0;
for (int i = 0; i < N; ++i) {
sum += A[i] * B[i];

}

fld ft0, 0(a1)
fld ft1, 0(a2)
addi a1, a1, 8
addi a2, a2, 8
fmadd.d fa0, ft0, ft1, fa0
bne a1, a3, -5

70 pJ
70 pJ
50 pJ
50 pJ
80 pJ
50 pJ

Memory access, operation, iteration control – can we do better?
Note: memory access (>1 cycle even for L1)  need latency tolerance for LD/ST



Stream Semantic Registers
LD/ST elision
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 Intuition: High FPU utilization ≈ high energy-efficiency

 Idea: Turn register read/writes into implicit memory 
loads/stores.

 Extension around the core’s register file

 Address generation hardware

 Increase FPU/ALU utilization by ~3x up to 100%

 SSRs ≠ memory operands
 Perfect prefetching, latency-tolerant
 1-3  SSR (2-3KG/SSR)



Floating-point Repetition Buffer
Remove control flow overhead in compute stream
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 Programmable micro-loop buffer

 Sequencer steps through the buffer, 
independently of the FPU

 Integer core free to operate in parallel: 
Pseudo-dual issue

 High area- and energy-efficiency



RISC-V ISA Extension for Target Workload
Mixed precision 

12

Inference ≠ Training Quantization

 Inference: INT8 quantization is SoA

 Training: High dynamic range needed for 
weights and weight updates

fp32 is still standard for DNN training 
workloads. Low precision training with bf18
and fp8

Support a wide variety of FP formats and 
instructions:

 Standard: fp64, fp32, fp16, bf16

 Low precision: fp8, altfp8
 fp8 (1-4-3): forward prop.
 altfp8 (1-5-2): backward prop.
 Exp. ops: accumulation

Efficient DNN inference & training



Cascade of EXFMAs vs EXSDOTP
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Non-distributive FP addition Precision Loss

FPU SDOTPCascade of FMAs

 Fused EXSDOTP (i.e. lossless)
 Single normalization and rounding step
 Smaller area and shorter critical path
 Product by-pass to compute fused three-term

addition (vector inner sum)
 Stochastic rounding supported (+3% area)

EXFMA

EXFMA

EXSDOTP

DOTP=A*B+C*D+EDOTP=A*B+(C*D+E)



SSSR
Streamer

What About Sparsity? Indirect SSR Streamer

 Based on existing 3-SSR streamer
1. Extend 2 SSRs to ISSRs
2. Add index comparison unit between ISSRs
3. Forward result indices to 3rd SSR
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SSSR
Streamer

What About Sparsity? Indirect SSR Streamer

 Based on existing 3-SSR streamer
1. Extend 2 SSRs to ISSRs
2. Add index comparison unit between ISSRs
3. Forward result indices to 3rd SSR

 Control interface to FPU sequencer (frep.s)
 Result index count unknown ahead-of-time

 Enables general sparse-sparse LA on fibers:
 dotp: index match + fmadd
 vadd: index merge + fadd
 elem-mul: index match + fmul
 vec-mac: index merge + fmadd
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ISSR Performance Benefits

 Notable single-core speedups over RV 
baseline
 CsrMV: up to 7.0× faster, 79% FP util.
 SpV+SpV: up to 9.8× faster / higher FP util.
 SpV∙SpV: up to 7.7× faster / higher FP util.
 VTI (3D stencil code): up to 2.9× faster, 78% FP util.

 Significant benefits in multicore cluster: 
 CsrMV : up to 5.0× faster, 2.9x less energy
 CsrMSpV : up to 5.8× faster, 3.0x less energy
 VTI: up to 2.7× faster

 Notably higher peak FP utilizations than SoA 
CPUs (69×), GPUs (2.8×) on CsrMV
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ISSR Performance on Stencils
 Various 2D/3D stencils on 8-worker-core cluster
 FP64, 642/163 grid chunks, up to 4× unroll
 Tuned LLVM RV32G baseline vs ISSR-enhanced kernels

 Geomean 2.7× speedups, 82% FP utilization
 ISSR IPC consistently >1 as ISSRs 

enable pseudo-dual-issue

 Baseline perf. degrades for large (3D) stencils
 Cannot maintain unroll and keep reusable 

inner-loop data in register file
 ISSR streams avoid this bottleneck:

2.5× 2D  3.2× 3D geomean speedup
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Efficient PE (snitch) architecture in perspective
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1. Minimize control overhead  Simple, shallow pipelines
2. Reduce VNB   amortize IF: SSR-FREP + SIMD (Vector processing) 
3. Hide memory latency  non-blocking (indexed) LD/ST+dependency tracking 
4. Highly expressive, domain-specific instruction extensions (thanks, RISC-V!)
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The Cluster: Design Challenges
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CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

 Efficient PE
 Hide TCDM “residual” latency
 Remove Von Neumann Bottleneck

 Low latency access TCDM
 Multi-banked architecture
 Fast logarithmic interconnect 

 Fast synchronization
 Atomics
 Barriers



High speed logarithmic interconnect
P1 P2 P3 P4

B2 B3 B4 B5 B6 B7 B8B1

Routing 
Tree

Arbitration 
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Processors

Memory 
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N+8

World-level bank interleaving «emulates» multiported mem
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@1GHz, 8-16 PEs, Latency: 2 cycles + stalls for banking conflicts 

Do not underestimate on-chip wires… 



Efficient Explicit Global Data Mover
hide L2main memory latency
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 64-bit AXI DMA – explicit double-buffered 
transfers – better than D$

 Tightly coupled with Snitch (<10 cycles 
configuration)

 Operates on wide 512-bit data-bus

 Hardware support to copy 2-4-dim shapes

 Higher-dimensionality handled by SW

 Intrinsics/library for easy programming

 Domain-specific autotilers

Snitch 
Core

DMA 
Backend

DMA
Decoder

2D 
Extension



Snitch Cluster Architecture
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…

Logarithmic Interco
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FPU, 87.44

Miscellaneous, 
25.26

ICACHE, 4.82

SSR/FREP, 
9.52

Integer Core, 
4.24

L1 Memory, 
47.19

Where does the Energy go?
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Integer core uses
2% of power

SSR/FREP hardware
uses 5% of power

FPU uses 50% of power

In an 8-core cluster
Inevitable to have local memory
(e.g., GPU/GPU L1 cache, vector register file)

Spending energy where it contributes to the result  High Efficiency



Efficient Cluster architecture in perspective

25

1. Memory pool – efficient sharing of L1 memory
2. Fast and parsimonious synchronization
3. Data Mover + Double buffering – explicitly managed block transfers at the boundary  
4. More cores and more memory per cluster… that would be nice!



Back to the cluster… Can we make it Bigger?

 Why? 
 Better global latency tolerance if L1size > 2*L2latency*L2bandwidth (Little’s law + double buffer)
 Easier to program (data-parallel, functional pipeline…)
 Smaller data partitioning overhead

 An efficient many-core  cluster with low-latency shared L1
 256+ cores
 1+ MiB of shared L1 data memory
 ≤ 10 cycles L1 latency (without contention) 

 Physical-aware design
 WC Frequency > 500 Mhz
 Targeting iso-frequency with small cluster

26

MemPool



Hierarchical Physical Architecture
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 Tile
 4 32-bit cores
 16 banks
 Single cycle memory access

 Group
 64 cores
 256 banks
 3-cycles latency

 Cluster
 256 cores
 1 MiB of memory (1024 banks)
 5-cycles  latency
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Core 0 Core 1 Core 2 Core 3

L0 I$ L0 I$ L0 I$ L0 I$

Shared L1 Instruction Cache

Interconnect

Scratchpad Memory

Bank 
0

Bank 
1

Bank 
2

Bank 
3

Bank 
4

Bank 
15

MemPool Tile MemPool Group

Tile 
0

Tile 
4

Tile 
1

Tile 
5

Tile 
2

Tile 
6

Tile 
3

Tile 
7

Tile 
8

Tile 
12

Tile 
9

Tile 
13

Tile 
10

Tile 
14

Tile 
11

Tile 
15

Local

North Northeast

East
MemPool Cluster

Group 0
Tile 0-15

Group 1
Tile 16-31

Group 2
Tile 32-47

Group 3
Tile 48-63



Can we push it further? Mempool Terapool
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GF12 0.8V 16 Snitch/Tile, Multi-stage Interconnect 0.23 req/core/cycle 
3 cycles 5 cycles 9 cycles

1024 Cores 4MB, 4096Banks! 
69mm2, 3.8W, 900MHz 0.6TOPS (MMUL) @5nm: 23mm2, 2.2W, 1.2GHz, 1TOPS 

4MB can hide a latency of 500ns for a BW of 4TBps
… need more?   Terapool-3D
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Occamy: RISC-V goes HPC Chiplet!
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Occamy NoC: Efficient and Flexible Data Movement
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Problem: HBM Accesses are 
critical in terms of
 Access energy
 Congestion
 High latency

Instead reuse data on lower levels 
of the memory hierarchy
 Between clusters
 Across groups

Smartly distribute workload
 Clusters: Tiling, Depth-First 
 Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

Big trend!



High-Performance, General-Purpose
Our scalable architecture is general-purpose and high-performance

Peak chiplet performance @1GHz:
 FP64: 384 GFLOp/s
 FP32: 768 GFLOp/s
 FP16: 1.536 TFLOp/s
 FP8: 3.072 TFLOp/s

Preliminary measured results:
 Dense Kernels:

– GEMMS: ≥ 80% FPU utilization (also for SIMD MiniFloat)
– Conv2d:  ≥ 75% PFU utilization (also for SIMD MiniFloat)

 Stencils Kernels: ≤ 60% FPU utilization

 Sparse Kernels:   ≤ 50% FPU utilization
32
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Silicon Interposer: Hedwig (65nm, passive, GF)

 Interlocked die arrangement
 Prevent bending, increase stability

 Compact die arrangement
 No dummy dies or stitching needed

 Fairly low I/O pin count due to no high-
bandwidth periphery
 Off-package connectivity: ~200 wires
 Array of 40 x 35 (-1) C4s (total of 1’399 C4 bumps)
 Diameter: 400µm, Pitch: 650µm

 Die-to-Die: ~600 wires

 HBM: ~1700 wires

HBM DRAM 1Occamy 1

HBM DRAM 0 Occamy 0

Taped out: 15th of October 2022
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Approaching 1T(DP)-FLOP
Dual Chiplet System Occamy:
 >430+ RV Cores 
 0.8 T DP-FLOP/s (no overclocking)
 32GB of HBM2e DRAM
 Low tens of W (est.)

Aggressive 2.5D Integration

Carrier PCB:
 RO4350B (Low-CTE, high stability)
 52.5mm x 45mm

Industry partners are key (thanks)!

3434



Deep Learning
Models

Programming Occamy: DACE
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X86

RISC-V

CUDA

FPGA

DaCeML frontend DaCe: Data-Centric Parallel Programming framework

GEMM, Convolution,
LayerNorm, Softmax, BatchNorm,

...

Library of optimized deep learning kernels

BERT

YOLOv5

...

SSR FREP DMA

DaCeML: Data-Centric Machine Learning 

Highly expressive DSL family – high-level transformations, support for explicitly managed memory



Efficient Chiplet architecture in Perspective
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1. Multi-cluster single-die scaling  strong latency tolerance, modularity
2. NoC for flexible Clus2Clus, Clus2Mem, C2C traffic  reduce pressure to Main memory
3. Top level NoC Routes to “local main memory” / “global main memory” balanced BW
4. Modular chiplet architecture: HBM2e,  NoC-wrapped C2C, multi-chiplet ready



System Level: Monte Cimone, the first RISC-V Cluster 

Designed for HPC “pipe cleaning”
37



Preparing for Occamy: Accelerator on PCIe cards
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 Currently using FPGA-mapped “tiny Occamy”
 VCU128 with HBM

 Supporting hybrid usage
 Boot directly on standalone CVA6 
 Do not boot and let the Host control the cluster
 HW probing by on-board device tree overlays

 High SW stack re-usability for both modes
 Same Linux drivers to map the cluster
 Same OpenMP offloading runtime



Conclusion
 Energy efficiency quest: PE, Cluster, SoC, System
 Key ideas
 Deep PE optimization  extensible ISAs (RISC-V!)
 VNB removal + Latency hiding: large OOO processors not needed 
 Low-overhead work distribution. Latency hiding  large “mempool”
 Heterogeneous architecture host+accelerator(s)

 Game-changing technologies
 “Commoditized” chiplets: 2.5D, 3D  
 Computing “at” memory (DRAM mempool)
 Coming: optical IO and smart NICs, swiches

 Challenges: 
 High performance RV Host?
 RV HPC software ecosystem?

[AMD Naffziger ISCAS22]

[RIKEN Matsuoka MODSIM22] 39
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