ETHzürich

Integrated Systems Lab

ColibriES: End-to-End Efficiency for Neuromorphic Processing at the Edge

Georg Rutishauser¹, Robin Hunziker¹, Alfio di Mauro¹, Sizhen Bian¹, Michele Magno², Luca Benini^{1,3} ¹Integrated Systems Lab, ETH Zurich; ²Project-Based Learning Center, ETH Zurich; ³Università di Bologna

Introduction

Event-driven paradigm: **improve sensing** and **computing efficiency** by only processing events describing relevant changes in the input:

Domain	Efficiency Benefit	Technology
Sensing	Avoid redundant data collection & transmission	Dynamic Vision Sensors (DVS/Event Cameras)
Computing	Avoid processing of irrelevant data	Neuromorphic Computing: Spiking Neural Networks (SNNs)

Existing platforms fail to harness the potential of event-driven processing for ultra-low-power edge applications due to overheads in communication and the lack of an efficient and versatile host platform. ColibriES closes this gap, bringing end-to-end efficiency in neuromorphic and conventional algorithms to the edge.

ColibriES: Enabling End-to-End Efficiency in Neuromorphic & Conventional Applications

ColibriES unites event-based neuromorphic, DNN-based and general-purpose computing in an ultra-efficient edge system. End-to-end efficiency is achieved through integration of sensor interfaces with efficient heterogeneous processing and extensive communication and control capabilities in the Kraken RISC-V SoC (see below). The ColibriES evaluation PCB connects Kraken to the outside world:

Results and SoA Comparison

We evaluate ColibriES's efficiency on the application of 11-class gesture recognition from DVS data with a 7-layer spiking CNN (SCNN), using the DVS128 dataset from [2]. We evaluate the latency and energy consumption of the end-to-end pipeline of data acquisition, SNN inference on SNE and actuation of a PWM output.

Work/Platform	[3]/Intel Loihi	[4]/IBM TrueNorth	Ours/ColibriES
Network	5-layer SCNN	16-layer SCNN	7-Layer SCNN
Accuracy	90.5%	86.5%-94.6%	83%
End-to-End?	X	\checkmark	\checkmark
P _{proc,idle} (mW)	29.2	68.8-134.4	17.7
$P_{proc,inf}$ (mW)	N/A	88.5-178.8	35.6
E _{proc,inf}	N/A	28.8	7.7

- 2.5x lower inference energy than TrueNorth
- Further improvement potential from improved preprocessing
 Ultra-efficient data acquisition with native DVS interface

E2E Latency/Energy Breakdown

Kraken: The RISC-V SoC at the Heart of ColibriES

Kraken is a multi-core RISC-V based SoC from the PULP (Parallel Ultra Low Power) family. It offers the following features:

- Rich peripheral set, including DVS and RGB camera interfaces
- Power management: power gating of unused blocks

Conclusion

With **ColibriES**, we have presented a fully embedded, low-power heterogeneous edge computing system. ColibriES:

- Brings end-to-end event-driven computing to the edge
- Offers a wide range of peripherals, including for DVS cameras and RGB cameras, enabling novel low-power sensor fusion approaches
- Unites **ultra-efficient** accelerators in one versatile platform:
 - SNE for SNN inference
 - **CUTIE** for ternary neural networks
 - 8-core PULP Cluster for arbitrary compute tasks
- Achieves SoA efficiency on end-to-end DVS-based gesture recognition (IBM DVS-Gesture dataset):
 - **DVS-to-label energy** consumption of **7.7 mJ**
- Ultra-efficient processing units for multi-paradigm computing:

Paradigm	Processing Unit	Algorithms
Event-Driven	SNE [1]	Spiking Neural Networks
Frame-Based	CUTIE [2]	Ternary Neural Networks
General-Purpose	8-Core PULP Cluster	Arbitrary

Technology	$\mathrm{GF}~22\mathrm{nm}~\mathrm{FDX}$	ID Pads FLLs L2 Memory Private SoC Cluster PULPO		
Area	$9\mathrm{mm}^2$	CORE CORE	DVSI g Shared to L1 Shared	i ci c
Memory (SRAM)	$1 \operatorname{MiB} L2 + 128 \operatorname{KiB} L1$	L2 Memory	I ² C ⁱ g ^j	
V _{DD}	$0.5\mathrm{V}\text{-}0.8\mathrm{V}$	Core Shared		
Max. Freq.	$330\mathrm{MHz}$	SNE Activation Memory	CPI CPI Interconnect FPU FPU	
Cluster Eff.	$300 \ \mathrm{GOp/s/W}$	OCUs / Compute Engines		2 (
SNE Eff.	$>1 \mathrm{TSyOp/s/W}$			
CUTIE Eff.	$>1 \mathrm{TOp/s/W}$	State Weight Memory		
System Power	$200\mathrm{mW} ext{-}300\mathrm{mW}$	CUTIE	APB	
		CORRECT CORRECT CONTRACTOR C	Padframe Fabric Controller (FC) Accelerator	
Kraken Key Figures of Merit		Die Micrograph of Kraken	Block Diagram of Kraken's architecture	

- SNN inference energy of 1.4 mJ on SNE
- 35 mW average inference power

References & Links

- 1. A. Di Mauro et al.: "SNE: An Energy-Proportional Digital Accelerator for Sparse Event-Based Convolutions", 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)
- M. Scherer et al.: "A 1036 TOp/s/W, 12.2 mW, 2.72 µJ/Inference All-Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications", 2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)
- 3. R. Massa et al.: "An Efficient Spiking Neural Network for Recognizing Gestures with a DVS Camera on the Loihi Neuromorphic Processor", Proceedings of the 2020 International Joint Conference on Neural Networks
- 4. A. Amir et al.: "A Low Power, Fully Event-Based Gesture Recognition System", CVPR 2017