

PACE: An Optimal Piecewise Polynomial Approximation Unit for Flexible and Efficient Transformer Non-linearity Acceleration

Arpan Suravi Prasad*, Gamze İslamoğlu*, Luca Bertaccini*, Davide Rossi*, Francesco Conti*, Luca Benini*‡

*Integrated Systems Laboratory, ETH Zurich; ‡DEI, University of Bologna

PULP Platform

Open Source Hardware, the way it should be!

youtube.com/pulp_platform

Transformers Are Dominating Al

ETH zürich

* Zhu, Jiachen, et al. "Transformers without normalization." Proceedings of the CVPR 2025

08.07.25 ISVLSI-2025

Wang, Run, et al. "VEXP: A Low-Cost RISC-V ISA Extension for Accelerated Softmax Computation in Transformers." arXiv preprint arXiv:2504.11227 (2025).

ETH zürich

08.07.25 ISVLSI-2025

Existing Methods for Non-linearity Acceleration

Specialised hardware for a single function High performance & Energy Efficiency Not adaptable to other functions

Lookup table method No computation required at runtime High area cost to support fine granularity or a wide dynamic range Pure polynomial approximation Very high Accuracy and dynamic range Very High computational cost

Piecewise linear approximation(PwLA)
High Accuracy and good dynamic range
Higher partition count → larger area
requirement to maintain accuracy

This Work – Piecewise Polynomial Approximation(PwPA) High Accuracy and wide dynamic range significantly fewer partitions compared to PwLA

Contributions: Our Approach to Non-linearities

- PACE Piecewise polynomial Approximation Compute Engine
- Evaluations on various SoA AI models (< 0.2% accuracy loss)
- A parametric datapath
 - Arbitrary partitions, degrees
 - Multi-precision support \rightarrow FP32 / FP16 / BFP16 / FP8
- Runtime configurable
 - arbitrary degrees and partitions \rightarrow accuracy tuning
- System-level integration

ETH zürich

- ISA extension to RISC-V cores in a multicore setup
- speedups of 65x and 750x over baselines
- Energy efficiency boosts **19x** and **150x**

PwPA Method: Uniform Partitioning

PwPA Method: Uniform Breakpoint Initialisation

PwPA Method: Polynomial Fit with Uniform Breakpoints

PwPA Method: Algorithm to Obtain Optimal Breakpoints

PwPA Method: Polynomial Fit Using Optimal Breakpoints

PwPA Method: Initial vs. Optimal Fit

PwPA with optimal bps achieves a superior fit

Results: PwPA Evaluation Setup on AI Workloads

- Hardware: NVIDIA RTX 3080 GPU
- Drop-in replacement on pretrained models (inference)
- Models Evaluated:
 - Image: MobileNetV3, EfficientNetV2-S, MobileViT, ViT
 - LLM: OpenLLaMA 3B v2
- Nonlinearities Targeted:
 - SiLU, GELU, Exp, Hardswish, Sigmoid, Sine, Cosine
- Tasks:
 - Image Classification: ImageNet
 - NLP: PIQA, OpenBookQA, Winogrande, ARC-Easy, ARC-Challenge
- PwPA Configurations Swept:
 - Degrees: [1, 2, 3] Partitions: [4, 8, 16, 32, 64]

Results: PwPA Accuracy on ViT

ViT

• \uparrow Partitions \rightarrow Error \checkmark

Results: PwPA Accuracy on ViT

- \uparrow Partitions \rightarrow Error \downarrow
- \uparrow Degree \rightarrow Error \downarrow ullet

Results: PwPA Accuracy on ViT

- \uparrow Partitions \rightarrow Error \checkmark
- \uparrow Degree \rightarrow Error \checkmark
- Similar trend for exp in softmax

Results: PwPA Accuracy on Diverse AI Workloads

• Less than 0.2% error across all evaluated workloads

Results: PwPA Accuracy on Diverse AI Workloads

- Less than 0.2% error across all evaluated workloads lacksquare
- **Comparable accuracy** observed for (Degree, Partitions): (1, 64), (2, 16), and (3, 8) •
- Hardswish function benefits with higher degree polynomial

PACE Datapath: Overview

PACE datapath: Partition Detector

08.07.25 ISVLSI-2025

PACE datapath: Coefficient Memory

Synthesis results – GF12, 0.95GHz, TT/0.8V/25C

FMA engine area dominates when partition count is low ٠

• FMA engine area remains constant with increasing partitions

ETH zürich

• Partition detector and coefficient memory area scale with the number of partitions

25

Results: Area Breakdown – PACE Datapath 200 Coefficient Memory Degree 1 Partition Detector Degree 2 FMA Engine 150Area [kGE] Degree 3 Others 100 500 8 16 32 64Number of Partitions

- FMA Engine area scales with polynomial degree
- Coefficient memory area increases with degree

ETH zürich

• Partition detector area remains constant with changing degrees

At Iso-Accuracy: Area Comparison

ETH zürich

- (1, 64) requires approximately 45% more area than (2, 16)
- (3, 8) requires approximately 14% more area than (2, 16)

System-Level Integration in a RISC-V Multi-Core Platform

- 8x RISC-V streaming enhanced cores
 - Dedicated SIMD 32b FPU per core
- 1x RISC-V control core
- Multi-bank interleaved L1 memory
 - Shared through an interconnect

Schuiki, Fabian, et al. "Stream semantic registers: A lightweight risc-v isa extension achieving full compute utilization in single-issue cores." *IEEE Transactions on Computers* 70.2 (2020): 212-227

System-Level Integration in a RISC-V Multi-Core Platform

- 8x RISC-V streaming enhanced cores
 - Dedicated SIMD 32b FPU per core
- 1x RISC-V control core
- Multi-bank interleaved L1 memory
 - Shared through an interconnect
- **RISC-V cores enhanced with PACE**
 - Integration into the FPU

PACE as a RISC-V ISA Extension

config port is mapped to CSRs

PwPA_init rs1

The values from rs1 are used for Initialising the breakpoint and coefficient memory

PwPA_exec rd, rs1, rs2 The input x and pres are read from rs2, rs1 and the output is written to the rd register

//Initialise the configurations
write_csr(CSR1, degree)
write_csr(CSR2, partitions)
write_csr(CSR3, (type,mode,init))

//Initialise the bp and coeff memory using
//value stored in rs1
for (i=0; i<NumBps+NumCoeffs; i++):
 PwPA_init rs1;</pre>

//Tensor wise PwPA execution. pres, x read
//from rs1, rs2 to produce result to rd
for (i=0; i<TensorLen; i++):
 PwPA_exec rd, rs1, rs2;</pre>

Baseline-2

PwPA-SW[FP32]

for(i=0; i<TensorLen; i++)</pre>

```
pid = compute_pid();
res=coeff[pid][0];
for(d=1; d<=degree; d++)
  fma(res, x[i], coeff[pid][d]);
y[i] = res;
```

Baseline-1

EXP-C (math library)[FP32]
for(i=0; i<TensorLen; i++)
y[i] = expf(x[i])</pre>

PACE-FP32 initialize(2, 16, FP32); for(i=0; i<TensorLen; i++) y[i] = PwPA_exec(x[i]);</pre>

PACE-FP16 initialize(2, 16, FP16); for(i=0; i<TensorLen; i++) y[i] = PwPA_exec(x[i]);</pre>

Exp-C

ETH ZÜRICH

PwPA-SW PACE-FP32 PACE-FP16

Exp-C

PwPA-SW PACE-FP32 PACE-FP16

Work	Diverse	Precision	Tech [nm]	Frequency [GHz]	Area [um²]	Throughput [GPolyEval/s]	Efficiency [GPolyEval/s/W]
[1]Diaz-Conti et. al	\checkmark	Fixed	NA	NA	NA	NA	NA
[2]Reggiani et. al	\checkmark	I/FP32/16/8	28	0.6	14857	0.6/1.2/2.4	158
[3]Islamoglu et. al	×	INT8	22	0.5	5709	NA	NA
[4]Zhu et.al	×	NA	28	2.78	10081	22.24	NA
PACE (2, 16)	\checkmark	FP32/16/8	12	0.95	10538	0.95/1.9/3.8	124/200/231

Work	Diverse	Precision	Tech [nm]	Frequency [GHz]	Area [um²]	Throughput [GPolyEval/s]	Efficiency [GPolyEval/s/W]
[1]Diaz-Conti et. al	\triangleleft	Fixed	NA	NA	NA	NA	NA
[2]Reggiani et. al	\triangleleft	I/FP32/16/8	28	0.6	14857	0.6/1.2/2.4	158
[3]Islamoglu et. al	×	INT8	22	0.5	5709	NA	NA
[4]Zhu et.al	×	NA	28	2.78	10081	22.24	NA
PACE (2, 16)	\checkmark	FP32/16/8	12	0.95	10538	0.95/1.9/3.8	124/200/231

• Specialised architectures [3,4] do not cater to diverse non-linearities

Work	Diverse	Precision	Tech [nm]	Frequency [GHz]	Area [um²]	Throughput [GPolyEval/s]	Efficiency [GPolyEval/s/W]
[1]Diaz-Conti et. al	\checkmark	Fixed	NA	NA	NA	NA	NA
[2]Reggiani et. al	\checkmark	I/FP32/16/8	28	0.6	14857	0.6/1.2/2.4	158
[3]Islamoglu et. al	×	INT8	22	0.5	5709	NA	NA
[4]Zhu et.al	×	NA	28	2.78	10081	22.24	NA
PACE (2, 16)	\checkmark	FP32/16/8	12	0.95	10538	0.95/1.9/3.8	124/200/231

- Specialised architectures [3,4] do not cater to diverse non-linearities
- [1], [2] and PACE can cater to diverse nonlinearity due to their reliance on PwLA/PA

Work	Diverse	Precision	Tech [nm]	Frequency [GHz]	Area [um²]	Throughput [GPolyEval/s]	Efficiency [GPolyEval/s/W]
[1]Diaz-Conti et. al	\triangleleft	Fixed	NA	NA	NA	NA	NA
[2]Reggiani et. al	\checkmark	I/FP32/16/8	28	0.6	14857	0.6/1.2/2.4	158
[3]Islamoglu et. al	×	INT8	22	0.5	5709	NA	NA
[4]Zhu et.al	×	NA	28	2.78	10081	22.24	NA
PACE (2, 16)	\checkmark	FP32/16/8	12	0.95	10538	0.95/1.9/3.8	124/200/231

- Specialised architectures [3,4] do not cater to diverse non-linearities
- [1], [2] and PACE can cater to diverse nonlinearity due to their reliance on PwLA/PA
- Evaluation on [1] is limited to only two CNNs
 - PACE is evaluated on a broad set with CNNs, ViTs and LLMs

Work	Diverse	Precision	Tech [nm]	Frequency [GHz]	Area [um²]	Throughput [GPolyEval/s]	Efficiency [GPolyEval/s/W]
[1]Diaz-Conti et. al	\checkmark	Fixed	NA	NA	NA	NA	NA
[2]Reggiani et. al	\checkmark	I/FP32/16/8	28	0.6	14857	0.6/1.2/2.4	158
[3]Islamoglu et. al	×	INT8	22	0.5	5709	NA	NA
[4]Zhu et.al	×	NA	28	2.78	10081	22.24	NA
PACE (2, 16)	\checkmark	FP32/16/8	12	0.95	10538	0.95/1.9/3.8	124/200/231

- Specialised architectures [3,4] do not cater to diverse non-linearities
- [1], [2] and PACE can cater to diverse nonlinearity due to their reliance on PwLA/PA
- Evaluation on [1] is limited to only two CNNs
 - PACE is evaluated on a broad set with CNNs, ViTs and LLMs
- Main comparison point for PACE is [2]

ETH zürich

Work	General	Precision	Technology [nm]	Frequency [GHz]	Area [um²]	Throughput [GPolyEval/s]	Efficiency [GPolyEval/s/W]
[2]	🔗 PwLA	I/FP32/16/8	28	0.6	14857	0.6/1.2/2.4	158
PACE	Server Se	FP32/16/8	12	0.95	10538	0.95/1.9/3.8	124/200/231

- We use (1,64) for PwLA to compare with PACE's (2,16) for iso-accuracy
- PACE offers ~1.6x more speedup compared to the [2]
- Energy efficiency calculation excludes VPU power in [2]
 - Excluding FMA power, PACE is 2.7x more energy efficient
- PACE offers runtime configurability with support for arbitrary degrees and partitions.
 - Higher degree support enables higher approximation accuracy.

Conclusion: Summarising PACE

The most flexible and adaptable solution

offering highest accuracy

PACE accelerates nonlinearities using PwPA with arbitrary partition and degrees

Energy savings are **19x** and **150x** times compared to baselines

https://github.com/pulp-platform/cvfpu/tree/feature/pace

Superior accuracy, No fine-tuning

< 0.2% error across diverse workloads

Systemlevel **speedup** by **65x** and **750x** compared to SW baselines

SoA References

- 1. González-Díaz_Conti, Griselda, et al. "Hardware-based activation function-core for neural network implementations." *Electronics* 11.1 (2021): 14.
- 2. Reggiani, Enrico, Renzo Andri, and Lukas Cavigelli. "Flex-sfu: Accelerating dnn activation functions by non-uniform piecewise approximation." *2023 60th ACM/IEEE Design Automation Conference (DAC)*. IEEE, 2023.
- 3. Islamoglu, Gamze, et al. "Ita: An energy-efficient attention and softmax accelerator for quantized transformers." *2023 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)*. IEEE, 2023.
- Zhu, Danyang, et al. "Efficient precision-adjustable architecture for softmax function in deep learning." *IEEE Transactions on Circuits and Systems II: Express Briefs* 67.12 (2020): 3382-3386.

Backup Slides – PACE in Extended part mode

- $f(x) = a_2 x^2 + a_1 x + a_0$
- First iteration
 - Initialize PACE with coefficients a₂, a₁, a₀ for partitions 0-P
 - $F(x) = (a_2x + a_1)x + a_0$ if x lies in partition 0-P
 - F(x) = x if bypass i.e.; x doesn't lie in the partition
- Second iteration
 - Initialize PACE with coefficients a₂, a₁, a₀ for partitions P+1-2P
 - $F(x) = (a_2x + a_1)x + a_0$ if x lies in partition P+1-2P
 - F(x) = pres if bypass i.e.; x doesn't lie in the partition

Backup Slides – PACE in Extended degree mode

- $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = (((a_4 x + a_3) x + a_2) x + a_1) x + a_0$
- First iteration
 - Initialize PACE with coefficients a₄, a₃, a₂
 - pres = $(a_4x + a_3)x + a_2$
- Second iteration
 - Initialize PACE with coefficients a_1 , a_0
 - pres = (pres * $x + a_1$) $x + a_0$

