

Poster No.

2549

Towards Whole Hand and Wrist Kinematic Tracking with a Wearable A-Mode Ultrasound Probe

G. Spacone¹, L. Benini^{1,2}, A. Cossettini¹

¹Integrated Systems Laboratory, ETH Zurich, Switzerland;

²DEI University of Bologna, Bologna, Italy

INTRODUCTION

A-mode US: enabler for **wearable** Hand Gesture Recognition (HGR) [1]

Need for **continuous** hand – wrist kinematic tracking → **Regression** of multiple Degrees of Freedom (DoFs)

[2] 2 DoFs ($R^2 = 0.96$) [3] 4 DoFs ($R^2 = 0.94$) [4] 3 DoFs ($R^2 = 0.87$, MAE=5.3°, RMSE=7.32°) Prior works:

- X Low number of DoFs
- ★ Portable systems [6] → no wearability
- **X** Power-hungry [5] → short-term use
- X Lack of/ limited AI capabilities

Objectives

Whole hand – wrist kinematic tracking

6 Hand

Movements

Session 2

Wearable-requirements: low power, easy to use, comfortable

5 Wrist

Movements

Session 3

End-to-end, on device

METHODS

Multi-Task Network Architecture for Regression

• Cross validation: 3 sets per session to train, 1 to validate, 1 to test

Sensors repositioning

Embedded Implementation

Data Collection

Acquisition

Sets (S)

Session 1

• Deployment on WULPUS NRF52 MCU

Wearable Armband

Ground Truth

MANUS Glove

RESULTS

a) Tracking of Wrist and Hand Kinematics

Green: ground-truth joint angles, Blue: model prediction

b) Embedded Implementation

Energy/Inference 0.6mJ

CONCLUSION

First-time whole hand-wrist kinematic tracking with WULPUS → 23 DoFs

(only 1.4x higher RMSE than [4] for a 7x larger #DoF)

Inference time **<24ms** → meets the **latency** requirements for **embedded applications** such as prosthetic control

88% wireless link bandwidth reduction with resultsonly transmission → improved reliability

REFERENCES

- [1] S. Zhou et al., Nature Reviews Bioengineering, 2025.
- [2] X.Yang et al., IEEE Trans. Ind. Electron., 2021.
- [3] B.G. Sgambato et al., *IEEE Trans. Biomed. Eng.*, 2023
- [4] G. Spacone et al., IEEE T-BioCAS, 2024
- [5] X.Yang et al., IEEE Trans. Syst. Man Cybern, 2019
- [6] M. Fournelle et al., Sensors, 2021
- [7] S. Frey et al., *IEEE IUS*, 2022[8] S. Vostrikov et al., *IEEE T-UFFC*, 2024