

End-to-end Open Source Platforms in the Era of Domain Specialization

from Dream to Reality

Luca Benini

lbenini@iis.ee.ethz.ch, luca.benini@unibo.it

youtube.com/pulp_platform | >

PULP Platform

Open Source Hardware, the way it should be!

Bigger Models, Bigger Bottlenecks

Deep learning models continue to grow in **scale** and **complexity**

 Growing model sizes demand everincreasing compute and memory

Source: https://epoch.ai/

Hardware Scaling is key to Al Progress (cloud & edge)

Peak computational throughput of notable ML hardware

How is Industry doing it?

Gains from

- Number Representation
 - FP32, FP16, Int8
 - (TF32, BF16)
 - ~16x

- Complex Instructions
 - DP4, HMMA, IMMA
 - ~12.5x
- Process
 - 28nm, 16nm, 7nm, 5nm
 - ~2.5x

- Sparsity
 - ~2x

 Model efficiency has also improved – overall gain > 1000x

Single-Chip Inference Performance - 1000X in 10 years

[Dally HotChips 2023]

Al Innovation beyond "NVIDIA Gravity" is Challenging!

It's the software \rightarrow flexibility key for fast evolution!

Need an open standard to counter a monopoly

RISC-V: The Free and Open RISC Instruction Set Architecture

tenstorrent

Fully Open-Source AI SW Stack with RISC-V!

PULP: Open-Source RISC-V Hardware:

Peripherals	
JTAG	SPI
UART	I2S
DMA	GPIO

Platforms

Single core

- PULPissimo, Croc
- Cheshire

- OpenPULP
- ControlPULP

- Hero, Carfield, Astral
- Occamy, Mempool

IOT

Accelerators and ISA extensions

XpulpNN, XpulpTNN

ITA (Transformers)

RBE, NEUREKA (QNNs) FFT (DSP) REDMULE (FP-Tensor)

All of our designs are open-source hardware

- All our development is on GitHub using a permissive license
 - HDL source code, testbenches, software development kit, virtual platform

https://github.com/pulp-platform

Allows anyone to use, change, and make products without restrictions.

We have designed over 60 ASICs using open-source HW

All our designs are based on open-source HW published on our GitHub page

All using a permissive open source license (SolderPad)

See our chip gallery under: http://asic.ethz.ch/

End-to-end OSHW aims to open all steps of IC design

Design

- RTL / HDL descriptions (quite common)
- Schematics / Physical Design (may have dependencies to technology information)

Tools (EDA)

- Front-end tools (Synthesis)
- Back-end tools (Placement and Routing)
- Verification tools (Simulation)

Manufacturing (PDK)

- Design rules for manufacturing (separation, minimum width of metals)
- Layer stack information for parasitics (thickness, dielectric constants..)
- Device models (SPICE parameters) for simulation

End-to-end Open-Source allows sharing of design data

End-to-end Open-Source IC Design is possible today!

Design: from PULP

github.com/pulp-platform

Tools: from Johannes Kepler University (JKU)

Reliable VM with large collection of open-source tools

github.com/iic-jku/IIC-OSIC-TOOLS

Manufacturing: IHP130nm

github.com/IHP-GmbH/IHP-Open-PDK

Meet Basilisk: Open RTL, Open EDA, Open PDK

- Designed in IHP 130nm OpenPDK
 - **34mm**² (6.25mm x 5.50mm)
 - ~5× larger than previous end-to-end OS designs
 - 2.7 MGE total, 1.14MGE logic
 - 24 SRAM macros (114 KiB)
 - **62MHz** at nominal voltage (1.2V)
- RV64GC design runs Linux
- Active collaboration with

github.com/pulp-platform/cheshire-ihp130-o

Basilisk is a complete Linux-capable SoC

- 64-bit RISC-V core
- Rich peripherals:
 - HyperRAM controller @154MB/s
 - C2C AXI-Link @77MB/s
- Automatic boot via scratchpad

arxiv.org/pdf/2505.10060

Closing the PPA gap to commercial EDA

Yosys-slang full Sysverilog Frontend: @ <6sec runtime (from minutes)

Yosys synthesis: 1.1 MGE (1.6×) @ 77 MHz (2.3×), 2.5× less runtime, 2.9× less RAM

OpenROAD P&R: tuning -12% die area, +10% core utilization

We presented Basilisk at

Poster: lnkd.in/daB6HskB

Croc: a simple SoC for education with PULP IPs

(b)

- 32-bit RISC-V core (CVE2)
- Options to improve
 - User domain
 - Adding peripherals
 - Extensions to the core
- Reference design for VLSI2 lecture and exercises
- Pipe-cleaning with two Croc-based tapeouts
 - Mlem, Koopa (next slide)

github.com/pulp-platform/croc (

At ETH Zürich, IC Design teaching now uses open source HW.

In Spring 2025, our IC Design course switched to (mostly) open source

- Using IHP 130, Yosys and OpenROAD
 - Parts for backannotated simulation, test pattern generation, DRC/LVS, still use proprietary tools
 - Will be gradually replaced by open tools

https://vlsi.ethz.ch

Project based grading

- Students (in groups of two) will have to modify the Croc reference design
- Best five designs will be taped-out

72 students enrolled

- Projects finished in summer
- Tape-out in IHP130 September

And the students delivered!

Freedom on Tools & Process According to Design Goals

(b)

 10 open-EDAs & PDKs tape-outs with different design choices (+many more coming)

Active contribution to open-EDA community

- Successful educational goals:
 - Open-EDA based courses
 - Open-source tape-out student projects

Open-Source Design & Flow for Reproducible SoA Innovation!

End-to-end Open-Source IC Design is already working!

Easier collaboration / sharing

- Need to stand on the shoulder of giants
- Share common parts that all need
- Concentrate work/time where it matters

Open reproducible results

- Everyone can verify performance claims
- Allows us to generate example datasets that can be used to train/improve tools

Reduce entry barriers for all

- You can easily get started with IC Design
- No agreements needed to get started
- Can then decide to stay open or not

Accessible teaching for all

- Share courses, designs, examples
- Create tutorials, knowledge bases
- Training for industry

Back to AI: Bigger Models, Bottlenecks @ Edge

Deep learning models continue to grow in **scale** and **complexity**

- Growing model sizes demand ever-increasing compute and memory
- Inference compute scale even faster than for training
- Models that fit on a single GPU trail the frontier by less than one year

Embodied Gen.Al

Efficiency through Heterogeneity: Multi-Specialization

Brain-inspired: Multiple areas, different structure different function!

Posture

How to Specialize Silicon

Multiple Scales of acceleration

Extensions to processor cores

- Explore new extensions
- Efficient implementations

Shared-memory Accelerators

- Domain specific
- Local memory

Multiple Decoupled Accelerators

- Communication
- Synchronization

Local, global, package, system → Specialization at scale

Kraken: 22FDX SoC, Multiple Heterogeneous Accelerators

The Kraken: an "Extreme Edge" Brain

- RISC-V Cluster
 8 Compute cores +1 DMA core
- CUTIE

 Dense ternary-neural-network
 accelerator
- SNE
 Energy-proportional spikingneural-network accelerator

Technology	22 nm FDSOI
Chip Area	9 mm ²
SRAM SoC	1 MiB
SRAM Cluster	128 KiB
VDD range	0.55 V - 0.8 V
Cluster Freq	~370 MHz
SNE Freq	~250 MHz
CUTIE Freq	~140 MHz

Specialization in numbers (Joules)

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead

Energy-Efficient RV Core → 20pJ (8bit)

ISA-based $10-20x \rightarrow 1pJ$ (4bit)

XPULP

Configurable DP 10-20x \rightarrow 100fJ (4bit)

RBE

Highly specialized DP $100x \rightarrow 1fJ$ (ternary)

CUTIE, SNN

3-4 OoM may not be enough, and we need flexibility!

Open EDAs Heterogeneous Chips in Advanced CMOS?

Extreme Performance + Energy Efficiency is required!

On the Horizon: SeyrITA – GF22 with Open-Source Tools

- RISC-V Linux host platform
- Transformer accelerator
- Targeting BERT, mobileBERT, DEiT-T
- Leveraging microscaling quantization
- MXINT and MXFP32 formats
- 10x larger!
- 20-40MGE (SeyrITA) vs 2-3MGE (Basilisk)
- 500MHz target frequency
- 1-2TFLOP/s

On the Horizon: SeyrITA – Top Level

On the Horizon: SeyrITA – Compute Cluster

- **8 Snitch cores** with two new ISA extensions:
 - MXDOTP: Microscaling (MX) FP dot products
 - PACE: Piecewise polynomial approximations
- MXITA accelerator for MXINT8 matrix multiplications

One MXITA = 512 MACs/cycle = 1024 FLOP/cycle = 512 GFLOP/s @500MHz

On the Horizon: SeyrITA – Working on the Tapeout

- **Demonstrate** a large **22nm tapeout** with open-source tools
- Improve tools and close the performance gap
- Identify and implement missing features along the way
- **Active Collaboration with**

Snitch cluster floorplan exploration

Yes but why? Specialization + EDA multiplicative effect!

Precision tuning - OP/Mem tuning - deep arithmetic optimization - operand network tuning...

Co-Specialize SW, HW, EDA & Technology is the frontier

Library of Arithmetic Unit (LAU)

Block replacement is implemented in Yosys

Only used in FPGA designs to infer DSP slices

Detect and replace arithmetic operators

Currently: manual selection

Next: AI based!

No open-source LAU

- Well-optimized library is key to good results
- A LAU created at IIS as part of a PhD thesis
 - A wide range of arithmetic operations
 - 3 different performance variants of generic gate netlists
 - Thoroughly QoR evaluated and optimized
- SystemVerilog port: LLM translation, hand-verified & open sourced

High-Level Blocks

Generic Gates

Technology Cells

Smul

What Happens Next?

- 3.5D v1
 - 3D stacking on logic + 2.5D HBM (AMD MI300)
 - Face (top) to Back (bottom)
 - Die (top) to Wafer (bottom)

• 3.5D v2?

Monolithic 3D (CMOS2.0+3D memories)

MI300 InstinctTM

V1
SRAM+NOC+IO at the bottom

L2+L3

Long interconnect

L1

Comb tech3

Comb tech2

Comb tech1

LO

