From an Open-Source ISA to Open-Source HW to Open-Source Silicon
Integrated Systems Laboratory (ETH Zürich)

Luca Bertaccini lbertaccini@iis.ee.ethz.ch

PULP Platform
Open Source Hardware, the way it should be!
Team of 100 people in ETH Zürich – University of Bologna

- Research on energy-efficient computing architectures
 - Started in 2013, celebrated 10 years of PULP last year

- Led by Luca Benini
 - Involves ETH Zürich (Switzerland) and University of Bologna (Italy)
 - Large group of almost 100 people
Team of 100 people in ETH Zürich – University of Bologna

- Research on energy-efficient computing architectures

Started in 2013, celebrated 10 years of PULP last year

Led by Luca Benini

Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

Large group of almost 100 people
We have designed and tested more than 60 PULP ICs

<table>
<thead>
<tr>
<th>Year</th>
<th>IC Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>PULPv1</td>
<td>STM 28FDXO Multicore processor</td>
</tr>
<tr>
<td>2014</td>
<td>Diana</td>
<td>UMC 65 4-core system with approximate FPUs</td>
</tr>
<tr>
<td>2015</td>
<td>Fulmine</td>
<td>UMC 65 4-core system with ML and Crypto accelerators</td>
</tr>
<tr>
<td>2016</td>
<td>VivoSoC 2.001</td>
<td>SMIC 130 Mixed signal system for biosignal acquisition</td>
</tr>
<tr>
<td>2017</td>
<td>Mr. Wolf</td>
<td>TSMC 40 8+1 core IoT processor</td>
</tr>
<tr>
<td>2018</td>
<td>Poseidon</td>
<td>GF 22FDX Dual 64bit RISC-V core, 3x 8core snitch clusters, Body biasing test vehicle</td>
</tr>
<tr>
<td>2019</td>
<td>Baikonur</td>
<td>TSMC 65 IoT processor with 16 cores and QNN enhancements</td>
</tr>
<tr>
<td>2020</td>
<td>Dustin</td>
<td>GF 22FDX IoT processor with Spiking Neural and Ternary Inference Engines</td>
</tr>
<tr>
<td>2021</td>
<td>Occamy</td>
<td>GF 12LPP ML accelerator with 216 + 1 cores and HBM interface</td>
</tr>
</tbody>
</table>

Check http://asic.ethz.ch for all our chips.
We believe in open source

- **Collaboration with many different domain experts**
 - We cannot afford to do everything in-house

- **No long discussions on IP ownership and background IPs**
 - Everything in the open

- **We can start right away**
 - Time is spent on design not necessary paperwork
 - The licensing settles most of the needed discussions (who owns it, who can do what)

- **Friendly licensing for commercial purposes**
 - Permissive licensing allows commercial exploitation, foreground of partners can be closed

- **You can see what we have and evaluate us in advance**
Many benefits are enabled by open source

Managing Complex Designs

Faster Collaborations

Facilitates Industry/Academia Relationships

Auditable Designs, Reproducible Results
Starting from an open-source ISA: RISC-V

- To enable open-source full HW systems, we need an open-source ISA
- We could not have open-source processors otherwise

A modern, open, free ISA, extensible by construction
Endorsed and Supported by ~4000 Members
Changed the picture on Computing Systems Research!

and many many more
RISC-V Open-Source Software

- Toolchains: GCC, LLVM
- System tools: BINUTILS, GDB, OpenOCD, Glibc, Musl, Newlib, ... and more
- Language Runtimes: C, C++, Fortran, GO, Rust, Java, Ocaml, ... and more
- Operating Systems: Linux: Fedora, OpenSUSE, Gentoo, OpenEmbedded/Yocto, Buildroot, OpenWRT, FreeBSD
 FreeRTOS, Zephyr, RTEMS, Xv6, HelenOS, ... and more

Huge momentum, extensible, open-source, patent troll safe

A wide SW ecosystem already available to evaluate and use RISC-V hardware systems

https://github.com/riscv/riscv-software-list
What PULP provides is a box of building blocks

Platforms
- **Single Core**
 - PULPissimo
 - Cheshire
- **Multi-core**
 - PULPOpen
 - Snitch Cluster
- **Multi-cluster**
 - Occamy
 - Carfield

RISC-V Cores
- RI5CY 32b
- Ibex 32b
- Snitch 32b
- Ariane 64b

Peripherals
- JTAG
- UART
- I2S
- DMA
- GPIO

Interconnect
- Logarithmic interconnect
- APB – Peripheral Bus
- AXI4 – Interconnect

IOT
- Neureka (Convolution)
- RedMuLE (TinyML Training)
- CUTIE (Ternary DNN Inference)
- SNE (Spiking NN)

HPC
- Latch-Up 2024, Boston
All of our designs are open-source hardware

- All our development is on GitHub using a permissive license
 - HDL source code, testbenches, software development kit, virtual platform

https://github.com/pulp-platform

- Allows anyone to use, change, and make products without restrictions.

Heterogeneous Research Platform (HERO)

HERO is an FPGA-based research platform that enables accurate and fast exploration of heterogeneous computers consisting of programmable many-core accelerators and an application-class host CPU. Currently, 32-bit RISC-V cores are supported in the accelerator and 64-bit ARMv8 or RISC-V cores as host CPU. HERO allows to seamlessly share data between host and accelerator through a unified heterogeneous programming interface based on OpenMP 4.5 and a mixed-data-model, mixed-ISA heterogeneous compiler based on LLVM.

HERO’s hardware architecture, shown below, combines a general-purpose host CPU (in the upper left corner) with a domain-specific programmable many-core accelerator (on the right side) so that data in the main memory (in the lower left corner) can be shared effectively.

Latch-Up 2024, Boston
All of our designs are open-source hardware

- All our development is on GitHub using a permissive license.
- HDL source code, testbenches, software development kits, and virtual platforms.

PULP is released under the permissive Solderpad license, allowing anyone to use, change, and make products without restrictions.

Many of the GitHub Trending SystemVerilog repositories for the past months are:

- either directly from our group
- or have originated in our group
The open model led to successful industry collaborations

Arnold (GF22)
eFPGA with RISC-V core

Vega (GF22)
IoT Processor with ML acceleration

Siracusa (TSMC16)
IoT Processor with NVM technology

Occamy (GF12)
Chiplet based ML accelerator with 432 RISC-V cores
And many have used our work for their research.
Some (surprising) side effects of open-source hardware

• There is a surprising amount of bureaucracy involved
 • Code Ph.D. students/staff develop belongs to the university (they pay us)
 • Master/semester thesis students own the work they produce
 • Need to get proper approval for everyone involved

• Most agreements with companies are not meant for open source
 • Instead of paying for exclusive IP, we need sponsoring agreements
 • Important to make sure we do not sign anything that binds our open-source effort
From Open Hardware...
...to fully open-source IC design
Benefits of end-to-end openness

- **Research**
 - Easier collaboration (no NDAs)
 - Reproducing results
 - New research (using tools or data)

- **Education**
 - Increased access
 - Experiment with flows and tools
 - No black boxes, full transparency

- **Industry**
 - Transparent chain of trust
 - Lower initial cost
Open-source PDKs are the key

• Physical designs will contain technology relevant information
 • Nothing can be released (even if there were perfect open EDA tools) without technology info
 • So no open PDK no open source releases beyond RTL/HLS code

• IPs containing proprietary information on technology cannot be released
 • Open PDKs will allow us to change this

• Some good progress, more is needed
 • Skywater (130nm), IHP (130nm)
 • A 40nm/65nm open PDK would be a game changer, many viable products could be designed
Open-source EDA tools

- Open EDA tools work well and are improving fast
 - ETHZ is actively collaborating with UCSD
 - Currently working with Yosys (for synthesis) and OpenRoad (for PnR)
- Will not replace commercial EDA
 - A gap to PPA, service, support will remain
- Open source EDA will allow you to make your own chips
 - Good for many applications/needs
 - Will be great for teaching
- Summer school at ETH Zürich
 - June 3rd – 7th

https://efcl.ethz.ch/efcl-summer-school.html
Fully open IC design
• An open-source Linux-capable RISC-V MPU (based on https://github.com/pulp-platform/cheshire)
• Including a 64-bit RISC-V core (CVA6 - https://github.com/openhwgroup/cva6)
• About 1 MGE of logic
Open-source tool-flow

- Open-Source PDK (IHP 130nm)
- Pre-Process
 - Simplify SystemVerilog
 - Convert to Verilog
- Synthesis
 - Yosys from RTL to generic-cells
 - Calls ABC for logic optimization and mapping
- Place-and-Route
 - Collection of research tools into OpenRoad
Massive PPA improvements in 6 months

IHP130, tt-corner; Yosys-0.37 with optimized script if not mentioned otherwise

Latch-Up 2024, Boston
Massive PPA improvements in 6 months

Area Reduction: 1.6x
Maximum Frequency: 3.5x

IHP130, tt-corner; Yosys-0.37 with optimized script if not mentioned otherwise
Massive PPA improvements in 6 months

Area Reduction: 1.6x
Maximum Frequency: 3.5x

IHP130, tt-corner; Yosys-0.37 with optimized script if not mentioned otherwise
Basilisk: fully open SoC design (RTL to GDS)

- Fully open flow
 - GDS will be submitted in May 2024

- Designed using IHP 130nm
 - Open-source PDK

- Collaboration with all main open-source EDA tool developers

- Key Metrics:
 - 1.08MGE Logic
 - 13ns critical path
 - 6.25x5.5mm (34mm²)
 - 14.5h Runtime (+50% vs commercial)*

*2x 2.5GHz XeonE5-2670(10Core), max thread-count 20
In a nutshell: why open-source hardware & silicon?

- **It is a necessity**
 - We can not afford to make everything ourselves, we need to collaborate
 - Makes it possible to work together quickly
 - Your results are more trustworthy, anybody can verify it!

- **It works**
 - We have more projects, and more funding due to our open-source activities
 - We were able to start many interesting and fruitful collaborations

- **It helps others as well**
 - Many companies, universities, individuals are using pieces of PULP
 - There is already significant commercial use, a lot we don’t even know about
The future of open-source silicon is bright!