
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform

Open Source Hardware, the way it should be!

Neural Architecture Search for low-power MCUs

Alessio Burrello alessio.burrello@unibo.it

 alessio.burrello@polito.it

Daniele Jahier Pagliari

Matteo Risso

Beatrice Alessandra Motetti

mailto:alessio.burrello@unibo.it
mailto:alessio.burrello@polito.it

DNNs at the Extreme Edge

• Near-sensor DNN inference has several potential benefits w.r.t. a traditional cloud-

centric approach:

1. More predictable and lower (*) latency

2. Data privacy

3. Lower energy consumption (*)

 inference
(DNN)

Data End Node Gateway Cloud

Latency ↓ Predictability ↑

(*) possibly

Energy ↓ Privacy ↑

Expectation

Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate Visual

Pose Estimation aboard Nano-UAVs,", ICRA, 2023

The drone follows the head of the human

Reality

Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate Visual

Pose Estimation aboard Nano-UAVs,", ICRA, 2023

Reality Expectation

[1] Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate

Visual Pose Estimation aboard Nano-UAVs,", ICRA, 2023

[2] Palossi, Daniele, Zimmerman, Nicky., Burrello, Alessio, Conti, Francesco, Müller, Hanna, Gambardella, Luca Maria, ... & Guzzi, Jerome Fully onboard ai-powered human-drone pose estimation on

ultralow-power autonomous flying nano-uavs. IEEE Internet of Things Journal, 2021

Frontnet [2]

#Params: 304k

#MACs/inference 14.7M

Max throughput 45.3 FPS

MAE x-axis 0.33

 y-axis 0.12

 angle 0.77

Mission Failed

NAS network [1]

#Params: 65k

#MACs/inference 7.4M

Max throughput 51.2 FPS

MAE x-axis 0.25

 y-axis 0.11

 angle 0.52

Mission Complete

What changed from reality to expectation? Neural Architecture Search

NAS

P
o

st
-t

ra
in

in
g

AI Compilation

R
u

n
-t

im
e

Neural Architecture Search

(NAS)

Mixed-Precision Search

Quantization-Aware Training

(QAT)

Pruning

Post-Training Quantization

Memory Tiling

Primitives Selection

Graph Rewriting

Adaptive Inference

Big/little

Slimmable

Multi-precision

Hierarchical

Collaborative Inference

Tr
a

in
in

g
-t

im
e

Optimized Binary for

Target

DNN

“Seed” Dataset

HW

Model

Trained Model

(HDF5, Tflite, ONNX,..)

Compiled Model

(C, C++, FlatBuffer)

DNNs Deployment Flow

7

P
o

st
-t

ra
in

in
g

AI Compilation

R
u

n
-t

im
e

Neural Architecture Search

(NAS)

Mixed-Precision Search

Quantization-Aware Training

(QAT)

Pruning

Post-Training Quantization

Memory Tiling

Primitives Selection

Graph Rewriting

Adaptive Inference

Big/little

Slimmable

Multi-precision

Hierarchical

Collaborative Inference

Tr
a

in
in

g
-t

im
e

Trained Model

(HDF5, Tflite, ONNX,..)

Compiled Model

(C, C++, FlatBuffer)

DNNs Deployment Flow

8

DNN

“Seed” Dataset

HW

Model

Optimized Binary for

Target

2. (Differentiable) Neural

Architecture Search

Neural Architecture Search

• Motivation: Picking hyper-parameters manually is tricky

• Biases (rules of thumb, traditions, etc.)

• Fragmented and coarse design space explorations (e.g., width/res mult in MobileNets)

• Classic ML: hand-craft features, DL: hand-craft feature extractors!

• Neural Architecture Search (NAS)

• Automatic optimization of the network topology, exploring a large and fine-grain design space of hyper-

parameter settings

• Typically multi-objective: co-optimize accuracy and model complexity

• Model size/#MACs….

• …or better, latency/energy directly (requires models)!

10

Classic NAS

• Key steps:

1. Define the search space

2. Define a search engine

3. Build a performance estimator

• Thousands of GPU-hours per search!

11

• Procedure:

Guess

Train

Evaluate

Propose 1+ new

architecture(s)

Feedback to drive

the search

Differentiable NAS (DNAS)

• Relax the search space to make it continuous and differentiable

• Optimize the topology by gradient descent during training

• Reduce search costs: Gradient-based optimization is much more lightweight than

black-box methods (RL or Evolutionary)

12

3. PLiNIO: Plug-and-play

Lightweight Neural

Inference Optimizer

PLiNIO Motivation

14

SUPERNET: coarse-grain layer type selection

PIT: fine-grain layer’s hyper-parameters selection

MIXPREC: precision assignement

ORTHOGONAL

DNAS BASED

Developed by us

• PLiNIO is a Python package built on-top of the PyTorch ecosystem

that provides a Plug-and-play Lightweight tool for

the Inference Optimization of DNNs.

• PLiNIO exploits as main optimization engine DNAS algorithms which
notoriusly balance flexibility and lightness.

15

PLiNIO

16

PLiNIO is open-sourced on github

PLiNIO (cont’d)
• PLiNIO allows to automatically optimize your DNN's architecture with no

more than three additional lines of code to your original training loop.

18

1

2

3

3. Developed Differentiable

NAS algorithms

PIT: Pruning in Time

• Search space: For each Convolutional or Fully-Connected layer

20

1D Convolutional Kernel

Subsets

of the kernel

Smaller

number of

output

channels

Smaller

receptive

field

Larger

dilation

factor

Seed

Network

PIT: Pruning in Time

• Add a L1 regularization term to the training loss function that brings masks to 0

• More 0-valued masks smaller network

• Classical regularizers:

• N. of weights, correlates with memory occupation

• N. of MACs, correlates with latency/energy

• HW regularizers: piece-wise polynomial functions

• Final Loss Function:

21

Regularizer, function of

Trainable binary masks

Future: GAP9, Occamy and many others…

GAP8 modelling

PIT: Results

• 4 edge-relevant benchmarks (biosignals, keyword spotting).

• Up to 8x smaller and 7x faster models at iso-performance

22

PIT into the wild

• PIT has been now extended to 2D

networks for vision.

• Example: drone-to-human

pose estimation in low-power

nanodrones

• Same results of previous hand-tuned

network with 3x less memory, thanks to

PIT

• Collaboration with POLITO + UNIBO + ETHZ

+ IDSIA (Lugano) presented @ ICRA23

23

Multi-Regularization Loss

• From the designer perspective the main goal is finding an optimal trade-off between

accuracy and complexity while satisfying the memory requirements s* of the target.

• We develop a novel multi-regularization loss formulation:

24

Size-Loss

OPs-Loss

Zero when the

target is met

Used as proxy of

energy consumption

• The mutual importance of regularization loss terms is controlled with λ and μ:

• λ is fixed and such as to satisfy λ >> μ

• μ is tweaked to explore different Accuracy vs Energy tradeoffs

Multi-Regularization: Results

• Experiments on three edge relevant use-cases from MLPerf Tiny Benchmark Suite

which proposes reference optimized network implementations.

25

87%

86%

85%

84%

83%

82%

A
cc

81%

1e7
0.2 0.4 0.6 0.8 1.0 1.2

OPs

Image Classification-Cifar10

Seed
75%
50%
25%

87%

86%

85%

84%

83%

82%

81%

80%

79%

Visual Wake Word-MSCOCO

1e6
2 3 4 5 6 7

OPs
1

Seed
50%
25%

12.5%
6.25%

94%

92%

90%

88%

86%

84%

1.0

OPs
1.5 2.5

1e6

2.0 3.0

Seed
75%
50%
25%

Keyword Spotting-SCv2

• We obtain rich Pareto sets of architectures in the OPs vs. accuracy space, with memory

footprints spanning from 75% to 6.25% of baseline networks.

Other works

• Multi-constraint loss: a new NAS formulation to respect both a memory constraint

and a maximum latency

• Multi-precision search: a different precision can be chosen for each channel of a

tensor using gradient-descent.

• We support the export of quantized networks which can be imported from DORY (Deeploy soon) and executed on PULP

successfully!!!

• Heterogeneous-NAS: NAS for heterogenous hardware. It maps different part of a

layer to different accelerators

• Optimize network during NAS based on the type of layer/precision supported by each accelerator in a heterogeneous SoC

• Tested on DIANA AIMC and Digital Accelerators

• Accepted at ISLPED2023

26

What’s next?

27

 Adding new hardware models to improve the NAS search (GAP9, Occamy...)

 Insert the hardware in the loop to have a precise feedback of the network on the
MCU

 Targeting full application, trying to optimize a task and not only a loss

 Extend PliNIO to include all methods and allow for automatic end-to-end
optimization pipelines

 Interface the NAS tools with the deployment pipelines

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform

Open Source Hardware, the way it should be!

Neural Network Deployment on Heterogeneous Systems

Moritz Scherer scheremo@iis.ee.ethz.ch

Neural Network Deployment

• Until very recently, residual CNNs dominated the state-of-the-art

• ResNets

• MobileNets (v1, v2, v3, …)
• EfficientNets

• Dory was specifically designed for integer-quantized residual CNNs

• Support for two concurrent branches

• Support for integer arithmetic on the PULP Cluster

• Support for memory-aware layer-wise tiling

• Efficient parallelization strategies for various operators

• A match that led to advancements in the SoA several times over!

29

Dory for Deployment – Challenges & Limitations

• Dory deployment with accelerators is challenging

• Some layers have very low arithmetic intensity

• Depthwise convolutions, Matrix multiplications, …

• Depth-first tiling helps to keep execution compute bound

• Siracusa: Executing IRB layers depth-first improves MobileNetv2 performance by 60%!

• Even more challenges for our deployment tools

• Transformers dominate all ML benchmarks

• Low-precision floating point training & inference on microcontrollers is gaining traction

• Occamy & MemPool are breaking ground on HPC PULP systems

30

Deeploy – Enabling Heterogeneous Deployment

31

Context-Free

Templates

Expressive

Data Types

Self-Contained

Engines

Flexible Operator

Offloading

Flow- and Pass-

based

Graph Editing

Deeploy – Context-Free Templates

• What does it take to run a convolution?

• Inputs & weights need to be pre-allocated

• Kernel templates need to run on all cores

• Outputs need to be moved back

• Deeploy uses context-free templates

• DMA calls, etc. are generated by Deeploy

• Only kernel calls need to be implemented

32

DMA Transfer

Fork

Kernel

Kernel Kernel Kernel

Synchronization

DMA Transfer

Convolution

Deeploy – Expressive Data Types

• Deeploy uses expressive primitive types

• Immediate, Pointer, Struct & Future

• Bring your own immediate types

• Only need to implement a function that checks a value

• Compose your own types in pointers, structs, and futures

• Automatic strong type checking

• For your own immediate types, and all composed types

33

Deeploy – Self-Contained Engines

• The PULP SoC is designed for adding accelerators

• General-Purpose Accelerators like the PULP Cluster

• Application-specific Accelerators like N-EUREKA , NE16, CUTIE, ITA, …

• Compute engines are highly customizable

• Data types, Programming model, Memory access

• Deeploy keeps each engine self-contained

• Engine-specific, context-free templates, programming model, and data types

• The same engine in a different SoC works the same

34

Deeploy – Simple Microcontrollers

• This lets us generate network inference code!

35

Type-checked, nested,

auto-generated CMSIS-NN structs

ARM CMSIS-NN Convolution kernel call

Deeploy – Flexible Operator Offloading

• But only for single-core, single-memory-level systems

• Everything happens in the same execution context

• To run on a PULP Cluster, we have to

• Move memory with the DMA

• Offload code to the cluster

• From the Fabric Controller’s POV

• The DMA and Cluster work asynchronously

We need a way to model offloading and concurrent execution

36

L2 L1 Cluster

Interconnect

DMA

Interconnect

Fabric

Controller

Deeploy – Closures and Futures

• Deeploy uses closures to offload kernels

• A closure is a function that wraps a kernel call and its state

• Asynchronous computation produces Future-typed outputs

• Futures are values that “will be available later”

• Before generating a Future, we need to dispatch it

• Before accessing a Future, we need to resolve it

• Future types provide code to dispatch and resolve

• Futures enable local synchronization

• No OS, tasks or threads required – but supported

Futures allow us to address engines concurrently

37

L2 L1 Cluster

Interconnect

DMA

Interconnect

Fabric

Controller Accelerator

Deeploy – Tiling & Graph Manipulation

• Deeploy comes with a flexible & powerful graph editing framework

• Passes are used for match-based transformations

• “Replace all occurrences of A->B with C”

• Flows are used for graph-level information propagation

• Tensor type inference

• Bias pushing

• Tensor liveness analysis

• Deeploy’s tiling algorithm combines passes and flows

• And allows for depth-first tiling, as well!

38

A

B

D

C

D

Deeploy – Tile Constraint Flow

39

PW-Conv

1x1

DW-Conv

3x3

PW-Conv

1x1 +
A B C D E

• We find our pattern with a pass

• Tiling constraints are computed with a flow

• Constraints(B) = PW-Constraints(Constraints(A))

• Constraints(C) = DW-Constraints(Constraints(B))

• Constraints(D) = PW-Constraints(Constraints(C))

• Constraints(E) = Addition-Constraints(Constraints(A), Constraints(D))

• Using ORTools, we can compute a correct tiling strategy

Deeploy – Graph Tiling

40

PW-Conv

1x1

DW-Conv

3x3

PW-Conv

1x1 +
A B C D E

• With our tiling solution, implement a replacement pass

• Duplicate subgraph

• Add memory transfer nodes

• And the rest of the framework manages code generation!

PW-Conv

1x1

DW-Conv

3x3

PW-Conv

1x1 + A’ B’ C’ D’ E’
DMA

DMA

DMA

DMA

E’’ A’’

Deeploy – Ongoing and Future Work

• Engine support is growing, and an open-source release is on the horizon

• Implemented: ARM Cortex-M, MemPool, ITA, PULP Cluster

• WIP: N-EUREKA, Floating point support, …

• Future Work: Multi-Cluster systems like Occamy, Carfield, …

• Deeploy is designed with extensions in mind

• Flows, Futures, Closures, and Tiling were designed as extensions

• New engines and systems are crucial and easy to get started on

• We are looking for contributors!

• Talk to me, Victor, Francesco, or Alessio – there’s plenty to do!

41

Thanks for the attention

