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DNNs at the Extreme Edge 

• Near-sensor DNN inference has several potential benefits w.r.t. a traditional cloud-

centric approach: 

1. More predictable and lower (*) latency 

2. Data privacy 

3. Lower energy consumption (*) 

 

 

 inference 
(DNN) 

Data End Node Gateway Cloud 

Latency ↓     Predictability ↑ 

(*) possibly 

Energy ↓ Privacy ↑ 



Expectation 

Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate Visual 

Pose Estimation aboard Nano-UAVs,", ICRA, 2023 

The drone follows the head of the human 



Reality 

Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate Visual 

Pose Estimation aboard Nano-UAVs,", ICRA, 2023 



Reality  Expectation 

[1] Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate 

Visual Pose Estimation aboard Nano-UAVs,", ICRA, 2023 

[2] Palossi, Daniele, Zimmerman, Nicky., Burrello, Alessio, Conti, Francesco, Müller, Hanna, Gambardella, Luca Maria, ... & Guzzi, Jerome Fully onboard ai-powered human-drone pose estimation on 

ultralow-power autonomous flying nano-uavs. IEEE Internet of Things Journal, 2021 

Frontnet [2] 

#Params: 304k 

#MACs/inference 14.7M 

Max throughput 45.3 FPS 

MAE x-axis 0.33  

    y-axis 0.12  

             angle 0.77 

Mission  Failed 

NAS network [1] 

#Params: 65k 

#MACs/inference 7.4M 

Max throughput 51.2 FPS 

MAE x-axis 0.25  

    y-axis 0.11  

             angle 0.52 

Mission  Complete 

What changed from reality to expectation? Neural Architecture Search 

NAS 
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Compiled Model 

(C, C++, FlatBuffer) 

DNNs Deployment Flow 
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Trained Model 

(HDF5, Tflite, ONNX,..) 

Compiled Model 

(C, C++, FlatBuffer) 

DNNs Deployment Flow 
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2. (Differentiable) Neural 

Architecture Search 



Neural Architecture Search 

• Motivation: Picking hyper-parameters manually is tricky 

• Biases (rules of thumb, traditions, etc.) 

• Fragmented and coarse design space explorations (e.g., width/res mult in MobileNets) 

• Classic ML: hand-craft features, DL: hand-craft feature extractors! 

 

 

• Neural Architecture Search (NAS) 

• Automatic optimization of the network topology, exploring a large and fine-grain design space of hyper-

parameter settings 

• Typically multi-objective: co-optimize accuracy and model complexity 

• Model size/#MACs…. 

• …or better, latency/energy directly (requires models)! 
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Classic NAS 

• Key steps: 

1. Define the search space 

 

2. Define a search engine 

 

3. Build a performance estimator 

 

• Thousands of GPU-hours per search! 
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• Procedure: 

 

Guess 

Train 

Evaluate 

Propose 1+ new 

architecture(s) 

Feedback to drive 

the search 



Differentiable NAS (DNAS) 

• Relax the search space to make it continuous and differentiable 

 

• Optimize the topology by gradient descent during training 

 

• Reduce search costs: Gradient-based optimization is much more lightweight than 

black-box methods (RL or Evolutionary) 
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3. PLiNIO: Plug-and-play 

Lightweight Neural 

Inference Optimizer 



PLiNIO Motivation 
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SUPERNET: coarse-grain layer type selection 

PIT: fine-grain layer’s hyper-parameters selection  

MIXPREC: precision assignement 

ORTHOGONAL 

DNAS BASED 

Developed by us 



• PLiNIO is a Python package built on-top of the PyTorch ecosystem 

that provides a Plug-and-play Lightweight tool for 

the Inference Optimization of DNNs. 

• PLiNIO exploits as main optimization engine DNAS algorithms which 
notoriusly balance flexibility and lightness. 
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PLiNIO 
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PLiNIO is open-sourced on github 



PLiNIO (cont’d) 
• PLiNIO allows to automatically optimize your DNN's architecture with no 

more than three additional lines of code to your original training loop. 
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3. Developed Differentiable 

NAS algorithms 



PIT: Pruning in Time 

• Search space: For each Convolutional or Fully-Connected layer 

20 

1D Convolutional Kernel

Subsets 

of the kernel
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number of 
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PIT: Pruning in Time 

• Add a L1 regularization term to the training loss function that brings masks to 0 

• More 0-valued masks  smaller network 

• Classical regularizers: 

• N. of weights, correlates with memory occupation 

• N. of MACs, correlates with latency/energy 

• HW regularizers: piece-wise polynomial functions 

 

 

 

 

 

 

 

• Final Loss Function: 
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Regularizer, function of 

Trainable binary masks 

Future: GAP9, Occamy and many others… 

GAP8 modelling 



PIT: Results 

• 4 edge-relevant benchmarks (biosignals, keyword spotting). 

• Up to 8x smaller and 7x faster models at iso-performance 

22 



PIT into the wild 

• PIT has been now extended to 2D 

networks for vision. 

• Example: drone-to-human 

pose estimation in low-power 

nanodrones 

• Same results of previous hand-tuned 

network with 3x less memory, thanks to 

PIT 

• Collaboration with POLITO + UNIBO + ETHZ 

+ IDSIA (Lugano)  presented @ ICRA23 
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Multi-Regularization Loss 

• From the designer perspective the main goal is finding an optimal trade-off between 

accuracy and complexity while satisfying the memory requirements s* of the target. 

• We develop a novel multi-regularization loss formulation: 
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Size-Loss 

OPs-Loss 

Zero when the 

target is met 

Used as proxy of 

energy consumption 

• The mutual importance of regularization loss terms is controlled with λ and μ: 

• λ is fixed and such as to satisfy λ >> μ 

• μ is tweaked to explore different Accuracy vs Energy tradeoffs 



Multi-Regularization: Results 

• Experiments on three edge relevant use-cases from MLPerf Tiny Benchmark Suite 

which proposes reference optimized network implementations. 
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• We obtain rich Pareto sets of architectures in the OPs vs. accuracy space, with memory 

footprints spanning from 75% to 6.25% of baseline networks. 



Other works 

• Multi-constraint loss: a new NAS formulation to respect both a memory constraint 

and a maximum latency 

 

• Multi-precision search: a different precision can be chosen for each channel of a 

tensor using gradient-descent. 

• We support the export of quantized networks which can be imported from DORY (Deeploy soon) and executed on PULP 

successfully!!! 

 

• Heterogeneous-NAS: NAS for heterogenous hardware. It maps different part of a 

layer to different accelerators 

• Optimize network during NAS based on the type of layer/precision supported by each accelerator in a heterogeneous SoC 

• Tested on DIANA AIMC and Digital Accelerators 

• Accepted at ISLPED2023 
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What’s next? 

27 

 Adding new hardware models to improve the NAS search (GAP9, Occamy...) 

 

 Insert the hardware in the loop to have a precise feedback of the network on the 
MCU 

 

 Targeting full application, trying to optimize a task and not only a loss 

 

 Extend PliNIO to include all methods and allow for automatic end-to-end 
optimization pipelines 

 

 Interface the NAS tools with the deployment pipelines 
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Neural Network Deployment 

• Until very recently, residual CNNs dominated the state-of-the-art 

• ResNets 

• MobileNets (v1, v2, v3, …) 
• EfficientNets 

• Dory was specifically designed for integer-quantized residual CNNs 

• Support for two concurrent branches 

• Support for integer arithmetic on the PULP Cluster 

• Support for memory-aware layer-wise tiling  

• Efficient parallelization strategies for various operators 

 

• A match that led to advancements in the SoA several times over! 
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Dory for Deployment – Challenges & Limitations 

• Dory deployment with accelerators is challenging 

• Some layers have very low arithmetic intensity 

• Depthwise convolutions, Matrix multiplications, … 

• Depth-first tiling helps to keep execution compute bound 

• Siracusa: Executing IRB layers depth-first improves MobileNetv2 performance by 60%! 

 

• Even more challenges for our deployment tools 

• Transformers dominate all ML benchmarks 

• Low-precision floating point training & inference on microcontrollers is gaining traction 

• Occamy & MemPool are breaking ground on HPC PULP systems 

30 



Deeploy – Enabling Heterogeneous Deployment 
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Context-Free 

Templates 
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Flow- and Pass- 

based 

Graph Editing 



Deeploy – Context-Free Templates 

• What does it take to run a convolution? 

• Inputs & weights need to be pre-allocated 

• Kernel templates need to run on all cores 

• Outputs need to be moved back 

 

 

 

 

• Deeploy uses context-free templates 

• DMA calls, etc. are generated by Deeploy 

• Only kernel calls need to be implemented 
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DMA Transfer 

Fork 

Kernel 
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Synchronization 

DMA Transfer 
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Deeploy – Expressive Data Types 

• Deeploy uses expressive primitive types 

• Immediate, Pointer, Struct & Future 

• Bring your own immediate types 

• Only need to implement a function that checks a value 

• Compose your own types in pointers, structs, and futures 

• Automatic strong type checking  

• For your own immediate types, and all composed types 

33 



Deeploy – Self-Contained Engines 

• The PULP SoC is designed for adding accelerators 

• General-Purpose Accelerators like the PULP Cluster 

• Application-specific Accelerators like N-EUREKA , NE16, CUTIE, ITA, … 

 

• Compute engines are highly customizable 

• Data types, Programming model, Memory access 

 

• Deeploy keeps each engine self-contained 

• Engine-specific, context-free templates, programming model, and data types 

• The same engine in a different SoC works the same 
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Deeploy – Simple Microcontrollers 

• This lets us generate network inference code! 
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Type-checked, nested, 

auto-generated CMSIS-NN structs 

ARM CMSIS-NN Convolution kernel call 



Deeploy – Flexible Operator Offloading 

• But only for single-core, single-memory-level systems 

• Everything happens in the same execution context 

 

• To run on a PULP Cluster, we have to 

• Move memory with the DMA 

• Offload code to the cluster 

• From the Fabric Controller’s POV 

• The DMA and Cluster work asynchronously 

 

We need a way to model offloading and concurrent execution 
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Deeploy – Closures and Futures 

• Deeploy uses closures to offload kernels 

• A closure is a function that wraps a kernel call and its state  

• Asynchronous computation produces Future-typed outputs 

• Futures are values that “will be available later” 

• Before generating a Future, we need to dispatch it 

• Before accessing a Future, we need to resolve it 

• Future types provide code to dispatch and resolve 

• Futures enable local synchronization 

• No OS, tasks or threads required – but supported 

 

Futures allow us to address engines concurrently 
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Deeploy – Tiling & Graph Manipulation 

• Deeploy comes with a flexible & powerful graph editing framework 

• Passes are used for match-based transformations 

• “Replace all occurrences of A->B with C” 

• Flows are used for graph-level information propagation 

• Tensor type inference 

• Bias pushing 

• Tensor liveness analysis 

• Deeploy’s tiling algorithm combines passes and flows 

• And allows for depth-first tiling, as well! 
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Deeploy – Tile Constraint Flow 
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PW-Conv 

1x1 

DW-Conv 

3x3 

PW-Conv 

1x1 + 
A B C D E 

• We find our pattern with a pass 

• Tiling constraints are computed with a flow 

• Constraints(B) = PW-Constraints(Constraints(A)) 

• Constraints(C) = DW-Constraints(Constraints(B)) 

• Constraints(D) = PW-Constraints(Constraints(C)) 

• Constraints(E) = Addition-Constraints(Constraints(A), Constraints(D)) 

• Using ORTools, we can compute a correct tiling strategy 

 

 



Deeploy – Graph Tiling 
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PW-Conv 

1x1 

DW-Conv 

3x3 

PW-Conv 

1x1 + 
A B C D E 

• With our tiling solution, implement a replacement pass 

• Duplicate subgraph 

• Add memory transfer nodes 

• And the rest of the framework manages code generation! 

PW-Conv 
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DMA 

DMA 
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Deeploy – Ongoing and Future Work 

• Engine support is growing, and an open-source release is on the horizon 

• Implemented: ARM Cortex-M, MemPool, ITA, PULP Cluster 

• WIP: N-EUREKA, Floating point support, … 

• Future Work: Multi-Cluster systems like Occamy, Carfield, … 

 

• Deeploy is designed with extensions in mind 

• Flows, Futures, Closures, and Tiling were designed as extensions 

• New engines and systems are crucial and easy to get started on 

 

• We are looking for contributors! 

• Talk to me, Victor, Francesco, or Alessio – there’s plenty to do! 
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Thanks for the attention 


