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DNNs at the Extreme Edge

« Near-sensor DNN inference has several potential benefits w.r.t. a traditional cloud-
centric approach:
1.  More predictable and lower (*) latency
2. Data privacy

3. Lower energy consumption (*)

(*) possibly
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What changed from reality to expectation?

Frontnet [2] NAS network [1]
#Params: 304k #Params: 65k
#MACs/inference 14.7M #MACs/inference 7.4M
Max throughput 45.3 FPS Max throughput 51.2 FPS
MAE—-> x-axis 0.33 MAE—-> x-axis 0.25

y-axis 0.12 y-axis 0.11

angle 0.77 angle 0.52
Mission = Mission -

[1] Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate
Visual Pose Estimation aboard Nano-UAVs,", ICRA, 2023

[2] Palossi, Daniele, Zimmerman, Nicky., Burrello, Alessio, Conti, Francesco, Miiller, Hanna, Gambardella, Luca Maria, ... & Guzzi, Jerome Fully onboard ai-powered human-drone pose estimation on
ultralow-power autonomous flying nano-uavs. IEEE Internet of Things Journal, 2021



DNNs Deployment Flow
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DNNs Deployment Flow
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2. (Differentiable) Neural
Architecture Search
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Neural Architecture Search

« Motivation: Picking hyper-parameters manually is tricky
« Biases (rules of thumb, traditions, etc.)
« Fragmented and coarse design space explorations (e.g., width/res mult in MobileNets)

 Classic ML: hand-craft features, DL: hand-craft feature extractors!

« Neural Architecture Search (NAS)

« Automatic optimization of the network topology, exploring a large and fine-grain design space of hyper-
parameter settings

« Typically multi-objective: co-optimize accuracy and model complexity
« Model size/#MACs....

- ..or better, latency/energy directly (requires models)!

10

ETHzirich ‘.




Classic NAS

Key steps:

1. Define the search space

2. Define a search engine

3. Build a performance estimator

« Thousands of GPU-hours per search!

 Procedure:

Propose 1+ new
architecture(s)

Evaluate

Feedback to drive
the search

11



Differentiable NAS (DNAS)

« Relax the search space to make it continuous and differentiable

« Optimize the topology by gradient descent during training

« Reduce search costs: Gradient-based optimization is much more lightweight than
black-box methods (RL or Evolutionary)

mZurlch f»\ié' ¥ ALMAIMf\TE,R STUDIORUM 12




3. PLINIO: Plug-and-play
Lightweight Neural
Inference Optimizer
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PLINIO Motivation

SUPERNET: coarse-grain layer type selection ORTHOGONAL

PIT: fine-grain layer’s hyper-parameters selection >

DNAS BASED
MIXPREC: precision assignement \

Developed by us

ETHzirich &
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Inference Optimization

PLiNIO is a Python package built on-top of the PyTorch ecosystem
that provides a Plug-and-play Lightweight tool for
the Inference Optimization of DNNSs.

PLiNIO exploits as main optimization engine algorithms which
notoriusly balance flexibility and lightness.

T

P Prrininy
ETHz(rich (0 suehmmses
&

15




PLINIO

H eml-eda/ plinio ' public X EditPins v  ®Unwatch 2 » | % Fork 0 @ = Starred 16 | ~

<> Code () lssues 2 9 Pullrequests () Actions [ Projects [0 Wiki @ Security [~ Insights 3 Settings

¥ main ~ P1branch © 0tags Go to file Add file = About &

A Plug-and-play Lightweight tool for the

. danielepagliari Fixed bug in depthwise conv size computation for PIT. 125166 on Mar 15 ) 250 commits Inference Optimization of Deep Neural
networks
0 assets Update train_loop asset last month
[ Readme
B vscode Changad input_size_caleulator into input_features_calculator 8 maonths ago s Apache-2.0 license
B plinio Fixed bug in depthwise conv size computation for PIT. last month 7 16 stars
B unit_test Renaming from flaxnas to plinio last month ® 2 watching
¥ 0 forks
[ .gitignore fixed setup 8 months ago
Report repository
[ LICENSE Create LICENSE last month
™ READMEmd Updated README last month
Releases
[ requirements.txt PIT SuperMet and Requirements fixes last month
Mo releases published
M setup.py Updated README last month Create anew release

PLINIO is open-sourced on github

ETHzurich
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PLiNIO (cont’d)

PLiNIO allows to automatically optimize your DNN's architecture with no
more than three additional lines of code to your original training loop.

. J
model = ResNet()
model = plinio.PIT(model, input_shape=(C, H, W))

- epoch range(N_EPOCHS ) :

r samle, target data:
output = model(sample) QUEpUT = model{sample)
loss = criterion(output, target) task_loss = criterion(output, target? .
optimizer.zero_grad() loss = task_loss + model.get_regularization_loss()
loss.backward( ) optimizer.zero_grad()
optimizer.step() loss.backward( ) 3
optimizer.step()
exported_model = model.arch_export()

model = ResNet()
; epoch range(N_EPOCHS):
samle, target data:

18
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3. Developed Differentiable
NAS algorithms

LT

E'qurlch r/ {2 ALMA MATER STUDIORUM

i / |||||||||||| BOLOGNA




PIT: Pruning in Time

« Search space: For each Convolutional or Fully-Connected layer

Seed | | | Smaller
Network: : ( number of
— channels
Subsets - Smaller
C of the kernel —— J_ receptive
SRR TR
1D Convolutional Kernel = Larger
dilation
o)l =

ETH:zurich
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PIT: Pruning in Time

 Adda Ll regularization term to the training loss function that brings masks to 0

 More 0-valued masks = smaller network

« Classical regularizers:

« N. of weights, correlates with memory occupation

* N. of MACs, correlates with latency/energy

« HW regularizers: piece-wise polynomial functions
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Future: GAP9, Occamy and many others...

min [,(W, 9) + AR(Q) ___, Regularizer, function of
W.,0

Trainable binary masks
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PIT: Results

* 4 edge-relevant benchmarks (biosignals, keyword spotting).

« Up to 8x smaller and 7x faster models at iso-performance

M Seed Network A Hand-Tuned Network ~J¢- Size Regularizer -®~ OPs Regularizer
i [ W # u
g0 PPG | 1o prG | § ECG
2 El0%
£ 7] E
] oy &
5 G 5
E 108 E
3 210,
5.0 5% paap 55 62 50 : : - i L 958 992 pccuracy 2%
B | 10 [ [ '

8§10 SEMG = 2 | Kws KWS
@ £108 | N
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Accuracy Accuracy Accuracy
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PIT into the wild

 PIT has been now extended to 2D
networks for vision.

« Example: drone-to-human
pose estimation in low-power
nanodrones

« Same results of previous hand-tuned
network with 3x less memory, thanks to
PIT

 Collaboration with POLITO + UNIBO + ETHZ
+ IDSIA (Lugano) = presented @ ICRA23

o /
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Multi-Regularization Loss &9

* From the designer perspective the main goal is finding an optimal trade-off between
accuracy and complexity while satisfying the memory requirements s* of the target.

« We develop a novel multi-regularization loss formulation:

> :)\’S(Q)— I-: Size-Loss . Zerowhenthe

—— = target is met

% : ;LO(Q) ' OPs-LosS «— Used as proxy of

L energy consumption

Liask + Loreg

 The mutual importance of regularization loss terms is controlled with A and p:
e Ais fixed and such as to satisfy A>>p
* Wistweaked to explore different Accuracy vs Energy tradeoffs

ETHziirich (& weasrsmaisy 24




Multi-Regularization: Results

« Experiments on three edge relevant use-cases from MLPerf Tiny Benchmark Suite
which proposes reference optimized network implementations.

Image Classification-Cifar10 Visual Wake Word-MSCOCO Keyword Spotting-SCv2
87% * | 87% | = 94% " *
86%
86% 859 | O 2.2xReductiop * | 92% |
85% 84% * 90% -
. 0% X Seed s | Seed * Seed
) 83% @ 75;%’ 82% : gg;/:: e O @® 75%
82% 0 < 500/0 81% | 0 12.5% 86% O 50%
O 25% @ 6.25% O 25%
81% (9 50% : 84% | O
02 04 06 08 10 1.2 I N 1.0 1.5 2.0 2.5 3.0
OPs le7 OPs le6 OPs 1e6

* We obtain rich Pareto sets of architectures in the OPs vs. accuracy space, with memory
footprints spanning from 75% to 6.25% of baseline networks.

25
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Other works Q%

P

« Multi-constraint loss: a new NAS formulation to respect both a memory constraint
and a maximum latency

« Multi-precision search: a different precision can be chosen for each channel of a
tensor using gradient-descent.

«  We support the export of quantized networks which can be imported from DORY (Deeploy soon) and executed on PULP
successfully!!!

« Heterogeneous-NAS: NAS for heterogenous hardware. It maps different part of a
layer to different accelerators

« Optimize network during NAS based on the type of layer/precision supported by each accelerator in a heterogeneous SoC
« Tested on DIANA AIMC and Digital Accelerators
« Accepted at ISLPED2023

26
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What’s next? ¢.X

ETHzurich

Adding new hardware models to improve the NAS search (GAP9, Occamy...)

Insert the hardware in the loop to have a precise feedback of the network on the
MCU

Targeting full application, trying to optimize a task and not only a loss

Extend PIiNIO to include all methods and allow for automatic end-to-end
optimization pipelines

Interface the NAS tools with the deployment pipelines

@
nb
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Neural Network Deployment

« Until very recently, residual CNNs dominated the state-of-the-art

 ResNets
« MobileNets (v1, v2, v3, ...)
« EfficientNets

* Dory was specifically designed for integer-quantized residual CNNs
« Support for two concurrent branches
« Support for integer arithmetic on the PULP Cluster
« Support for memory-aware layer-wise tiling

« Efficient parallelization strategies for various operators

* A match that led to advancements in the SoA several times over!

ETHzirich (0 suessmesmaigay o




Dory for Deployment — Challenges & Limitations 0%

* Dory deployment with accelerators is challenging
« Some layers have very low arithmetic intensity
« Depthwise convolutions, Matrix multiplications, ...

« Depth-first tiling helps to keep execution compute bound

 Siracusa: Executing IRB layers depth-first improves MobileNetv2 performance by 60%!

« Even more challenges for our deployment tools
« Transformers dominate all ML benchmarks
« Low-precision floating point training & inference on microcontrollers is gaining traction

« Occamy & MemPool are breaking ground on HPC PULP systems

30
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Deeploy — Enabling Heterogeneous Deployment

Context-Free Expressive
Templates Data Types

Flow- and Pass- Flexible Operator Self-Contained
based Offloading Engines
Graph Editing

31



Deeploy — Context-Free Templates

« What does it take to run a convolution?
* Inputs & weights need to be pre-allocated
» Kernel templates need to run on all cores

» Qutputs need to be moved back

* Deeploy uses context-free templates
 DMA calls, etc. are generated by Deeploy

* Only kernel calls need to be implemented

DMA Transfer

Fork
Kernel

Kernel Kernel Kernel

Synchronization

DMA Transfer

PULPConv2D_8_Template = PULP2DConvTemplate("""

pulp_nn_conv${signatureString}(${data_in}, ${ctxtBuffer}, NULL, ${data_out}, ${weight}, ${mul}, ${add}, 1, ${log2D},
${dim_im_in_x}, ${dim_im_in_y}, ${ch_im_in}, ${dim_im_out_x}, ${dim_im_out_y}, ${ch_im_out}, ${dim_kernel x}, ${dim_k

ernel_y}, ${pads[@]}, ${pads(2]}, ${pads(1]}, ${pads(3]1}, ${strides[@]}, ${strides[1]}, 1, 1);
IIIIII]
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Deeploy — Expressive Data Types

* Deeploy uses expressive primitive types

 Immediate, Pointer, Struct & Future

* Bring your own immediate types
* Only need to implement a function that checks a value

« Compose your own types in pointers, structs, and futures

« Automatic strong type checking

« For your own immediate types, and all composed types

L Peornios
(MR ALMA MATER STUDIORUM
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Deeploy — Self-Contained Engines

 The PULP SoC is designed for adding accelerators
» General-Purpose Accelerators like the PULP Cluster
« Application-specific Accelerators like N-EUREKA , NE16, CUTIE, ITA, ...

« Compute engines are highly customizable

» Data types, Programming model, Memory access

* Deeploy keeps each engine self-contained

* Engine-specific, context-free templates, programming model, and data types

« The same engine in a different SoC works the same

LER e
LG ALMA MATER STUDIORUM
ZUFIC ZinP=ls VERSITA DI BOLOGNA




Deeploy — Simple Microcontrollers Q%

 This lets us generate network inference code! Type-checked, nested,
auto-generated CMSIS-NN structs

DeeployNetwork_Deeploy BUFFER_output_@_ctxt = (cmsis_nn_context){.buf = NULL, .size = 0};
DeeployNetwork_Deeploy_BUFFER_output_0_activation = (cmsis_nn_activation){.min = -64, .max = 63};
DeeployNetwork_Deeploy_BUFFER_output_@_fc_params = (cmsis_nn_fc_params){

.input_offset = 0, .output_offset = -64, .filter_offset = 0, .activation = {.min = -64, .max
DeeployNetwork_Deeploy_BUFFER_output_@_quant_params =

(cmsis_nn_per_tensor_quant_params){.multiplier = 9609216, .shift =
DeeployNetwork_Deeploy_BUFFER_output_0_input_dims = (cmsis_nn_dims){.n
DeeployNetwork_Deeploy BUFFER_output_@_filter_dims = (cmsis_nn_dims){.
DeeployNetwork_Deeploy_ BUFFER_output_@ output_dims = (cmsis_nn_dims){.
DeeployNetwork_Deeploy_BUFFER_output_@_bias_dims = (cmsis_nn_dims){.n

0}

arm_fully_connected_s8(
&DeeployNetwork_Deeploy_BUFFER_output_0_ctxt, &DeeployNetwork_Deeploy BUFFER_output_@_fc_params,
&Deep loyNetwork_Deeploy_BUFFER_output_0_quant_params, &DeeployNetwork_Deeploy_BUFFER_output_@_input_dims,
DeeployNetwork_Deeploy_BUFFER_28, &DeeployNetwork_Deeploy_BUFFER_output_0_filter_dims,
DeeployNetwork_Deeploy_BUFFER_32, &DeeployNetwork_Deeploy_BUFFER_output_0_bias_dims,
DeeployNetwork_Deeploy_BUFFER_classifier___QL_REPLACED__INTEGERIZE_UNSIGNED_ACT_PASS_0_add,
&DeeployNetwork Deeploy BUFFER output @ output dims, DeeployNetwork Deeploy BUFFER output 0);

ARM CMSIS-NN Convolution kernel call

ETH:zurich




Deeploy — Flexible Operator Offloading

« But only for single-core, single-memory-level systems

« Everything happens in the same execution context

Fabric
 Torunon a PULP Cluster, we have to Controller

* Move memory with the DMA
« Offload code to the cluster Interconnect

 From the Fabric Controller’s POV

 The DMA and Cluster work asynchronously

We need a way to model offloading and concurrent execution

m Iy S 0 srmn oy
zurich (& s

Interconnect

Cluster
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Deeploy — Closures and Futures

« Deeploy uses closures to offload kernels

« Aclosureis a function that wraps a kernel call and its state

* Asynchronous computation produces Future-typed outputs
» Futures are values that “will be available later”
« Before generating a Future, we need to dispatch it

ot | - it e it Fabric
efore accessing a Future, we need to resolve | Controller

» Future types provide code to dispatch and resolve

« Futures enable local synchronization Interconnect Interconnect
* No OS, tasks or threads required — but supported

Futures allow us to address engines concurrently




Deeploy —Tiling & Graph Manipulation

* Deeploy comes with a flexible & powerful graph editing framework

e Passes are used for match-based transformations

« “Replace all occurrences of A->B with C”

* Flows are used for graph-level information propagation

« Tensor type inference

* Bias pushing

« Tensor liveness analysis

* Deeploy’s tiling algorithm combines passes and flows

» And allows for depth-first tiling, as well!

‘1l /iﬂ;ﬁ ALMA MATER STUDIORUM
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Deeploy — Tile Constraint Flow

« We find our pattern with a pass

* Tiling constraints are computed with a flow
) = PW-Constraints(Constraints(A))
« Constraints(C) = DW-Constraints(Constraints(B))
« Constraints(D) = PW-Constraints(Constraints(C))
« Constraints(E) = Addition-Constraints(Constraints(A), Constraints(D))

« Constraints(B

« Using ORTools, we can compute a correct tiling strategy

—_— PW-Conv
A B C 1x1 D E
ETHziirich ‘0 susoameseioa . %?j




Deeploy — Graph Tiling

« With our tiling solution, implement a replacement pass
» Duplicate subgraph
« Add memory transfer nodes

* And the rest of the framework manages code generation!

PW-Conv
1x1

ETHziirich  wasanses



Deeploy — Ongoing and Future Work 0%

* Engine support is growing, and an open-source release is on the horizon
* Implemented: ARM Cortex-M, MemPool, ITA, PULP Cluster

« WIP: N-EUREKA, Floating point support, ...
« Future Work: Multi-Cluster systems like Occamy, Carfield, ...

* Deeploy is designed with extensions in mind
* Flows, Futures, Closures, and Tiling were designed as extensions

« New engines and systems are crucial and easy to get started on

« We are looking for contributors!

« Talk to me, Victor, Francesco, or Alessio — there’s plenty to do!

LER e
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Thanks for the attention




