Neural Architecture Search for low-power MICUs

Alessio Burrello alessio.burrello@unibo.it

alessio.burrello@polito.it

Daniele Jahier Pagliari
Matteo Risso

Beatrice Alessandra Motetti

@pulp_platform
PULP Platform

Open Source Hardware, the way it should be!

pulp-platform.org < e

youtube.com/pulp_platform »

mailto:alessio.burrello@unibo.it
mailto:alessio.burrello@polito.it

DNNs at the Extreme Edge

« Near-sensor DNN inference has several potential benefits w.r.t. a traditional cloud-
centric approach:
1. More predictable and lower (*) latency
2. Data privacy

3. Lower energy consumption (*)

(*) possibly

Latency d, Predictability 1 Privacy ™ Energy ¢

: =
(DNN)

End Node Gateway Cloud
@ @ @ >
------ (oo]
(=) == &

Deep Neural Network Architecture Search
for Accurate Visual Pose Estimation
aboard Nano-UAVs

E. Cereda, L. Crupi, M. Risso, A. Burrello, L. Benini, A. Giusti, D. Jahier Pagliari, and D. Palossi

@ Dalle Molle AN

S=s==— Institute for P X pu, i

2 . il olitecnico

====— Artificial gMu h h m h

S=—== Intelligence R & Tormo Zurlc
IDSIA et

m=()= roboticse -

Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate Visual
Pose Estimation aboard Nano-UAVs,", ICRA, 2023

Deep Neural Network Architecture Search
for Accurate Visual Pose Estimation

aboard Nano-UAVs

E. Cereda, L. Crupi, M. Risso, A. Burrello, L. Benini, A. Giusti, D. Jahier Pagliari, and D. Palossi

@ Dalle Molle s b~

S==== Institute for 78 U

= — PRy TR, AT v Politecnico m 2 v h
====— Artificial Q‘Mu . 3

B = Intelligence N d;" di Torino Z U r I C

IDSIA e

m==()= obokicse -

Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate Visual
Pose Estimation aboard Nano-UAVs,", ICRA, 2023

What changed from reality to expectation?

Frontnet [2] NAS network [1]
#Params: 304k #Params: 65k
#MACs/inference 14.7M #MACs/inference 7.4M
Max throughput 45.3 FPS Max throughput 51.2 FPS
MAE—-> x-axis 0.33 MAE—-> x-axis 0.25

y-axis 0.12 y-axis 0.11

angle 0.77 angle 0.52
Mission = Mission -

[1] Cereda, Elia, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, and Daniele Palossi. "Deep Neural Network Architecture Search for Accurate
Visual Pose Estimation aboard Nano-UAVs,", ICRA, 2023

[2] Palossi, Daniele, Zimmerman, Nicky., Burrello, Alessio, Conti, Francesco, Miiller, Hanna, Gambardella, Luca Maria, ... & Guzzi, Jerome Fully onboard ai-powered human-drone pose estimation on
ultralow-power autonomous flying nano-uavs. IEEE Internet of Things Journal, 2021

DNNs Deployment Flow

DNN HW
“Seed” Dataset Model
1|~' TensorFlow . @ o o

; o) e e
O PyTorch g? ol ”

£ ONNX
Neural Architecture Search
(NAS)

(V]

.g “
My

o]0}

C

£

§ Mixed-Precision Search

Quantization-Aware Training

(QAT)

Trained Model
(HDF5, Tflite, ONNX,..)

~
- -
p— -~ -

ETHzurich

Post-Training Quantization

Post-training

Compiled Model
(C, C++, FlatBuffer)

Run-time

-
-
- - =

Fw—mmETT T T T o e mm T

Collaborative Inference

Target

Optimized Binary for

DNNs Deployment Flow

DNN HW
“Seed” Model

1F_Te"3°rF|°W€%fN ol - Trained Model Compiled Model
gmm Seleie) [IE (HDFS, Tflite, ONNX,..) (C, C++, FlatBuffer)
Post-Training Quantization Collaborative Inference

()
= 2
v k= P4
£ g £
= 2 c

=)
= i~ =

- .::::.’:::v:_"_‘::::_-_-_-,-_____-_-_-_-_-_-_—_-_=_—_ ooz Optimized Binary for

Target

ETHzurich

2. (Differentiable) Neural
Architecture Search

LT

E'qurlch r/ {2 ALMA MATER STUDIORUM

i / |||||||||||| BOLOGNA

Neural Architecture Search

« Motivation: Picking hyper-parameters manually is tricky
« Biases (rules of thumb, traditions, etc.)
« Fragmented and coarse design space explorations (e.g., width/res mult in MobileNets)

 Classic ML: hand-craft features, DL: hand-craft feature extractors!

« Neural Architecture Search (NAS)

« Automatic optimization of the network topology, exploring a large and fine-grain design space of hyper-
parameter settings

« Typically multi-objective: co-optimize accuracy and model complexity
« Model size/#MACs....

- ..or better, latency/energy directly (requires models)!

10

ETHzirich ‘.

Classic NAS

Key steps:

1. Define the search space

2. Define a search engine

3. Build a performance estimator

« Thousands of GPU-hours per search!

 Procedure:

Propose 1+ new
architecture(s)

Evaluate

Feedback to drive
the search

11

Differentiable NAS (DNAS)

« Relax the search space to make it continuous and differentiable

« Optimize the topology by gradient descent during training

« Reduce search costs: Gradient-based optimization is much more lightweight than
black-box methods (RL or Evolutionary)

mZurlch f»\ié' ¥ ALMAIMf\TE,R STUDIORUM 12

3. PLINIO: Plug-and-play
Lightweight Neural
Inference Optimizer

LT

E'qurlch r/ {2 ALMA MATER STUDIORUM

i / |||||||||||| BOLOGNA

PLINIO Motivation

SUPERNET: coarse-grain layer type selection ORTHOGONAL

PIT: fine-grain layer’s hyper-parameters selection >

DNAS BASED
MIXPREC: precision assignement \

Developed by us

ETHzirich &

14

Inference Optimization

PLiNIO is a Python package built on-top of the PyTorch ecosystem
that provides a Plug-and-play Lightweight tool for
the Inference Optimization of DNNSs.

PLiNIO exploits as main optimization engine algorithms which
notoriusly balance flexibility and lightness.

T

P Prrininy
ETHz(rich (0 suehmmses
&

15

PLINIO

H eml-eda/ plinio ' public X EditPins v ®Unwatch 2 » | % Fork 0 @ = Starred 16 | ~

<> Code () lssues 2 9 Pullrequests () Actions [Projects [0 Wiki @ Security [~ Insights 3 Settings

¥ main ~ P1branch © 0tags Go to file Add file = About &

A Plug-and-play Lightweight tool for the

. danielepagliari Fixed bug in depthwise conv size computation for PIT. 125166 on Mar 15) 250 commits Inference Optimization of Deep Neural
networks
0 assets Update train_loop asset last month
[Readme
B vscode Changad input_size_caleulator into input_features_calculator 8 maonths ago s Apache-2.0 license
B plinio Fixed bug in depthwise conv size computation for PIT. last month 7 16 stars
B unit_test Renaming from flaxnas to plinio last month ® 2 watching
¥ 0 forks
[.gitignore fixed setup 8 months ago
Report repository
[LICENSE Create LICENSE last month
™ READMEmd Updated README last month
Releases
[requirements.txt PIT SuperMet and Requirements fixes last month
Mo releases published
M setup.py Updated README last month Create anew release

PLINIO is open-sourced on github

ETHzurich

LMA MATER STUDIORUM
NIVERSITA DI BOLOGNA 16

PLiNIO (cont’d)

PLiNIO allows to automatically optimize your DNN's architecture with no
more than three additional lines of code to your original training loop.

. J
model = ResNet()
model = plinio.PIT(model, input_shape=(C, H, W))

- epoch range(N_EPOCHS) :

r samle, target data:
output = model(sample) QUEpUT = model{sample)
loss = criterion(output, target) task_loss = criterion(output, target? .
optimizer.zero_grad() loss = task_loss + model.get_regularization_loss()
loss.backward() optimizer.zero_grad()
optimizer.step() loss.backward() 3
optimizer.step()
exported_model = model.arch_export()

model = ResNet()
; epoch range(N_EPOCHS):
samle, target data:

18

ETHzurich &

3. Developed Differentiable
NAS algorithms

LT

E'qurlch r/ {2 ALMA MATER STUDIORUM

i / |||||||||||| BOLOGNA

PIT: Pruning in Time

« Search space: For each Convolutional or Fully-Connected layer

Seed | | | Smaller
Network: : (number of
— channels
Subsets - Smaller
C of the kernel —— J_ receptive
SRR TR
1D Convolutional Kernel = Larger
dilation
o)l =

ETH:zurich

20

PIT: Pruning in Time

 Adda Ll regularization term to the training loss function that brings masks to 0

 More 0-valued masks = smaller network

« Classical regularizers:

« N. of weights, correlates with memory occupation

* N. of MACs, correlates with latency/energy

« HW regularizers: piece-wise polynomial functions

m Im2col
[Indirect
O Model

7 Real

[No-Im2col

MACs/cycle

4
¥
4
MACs/cycle
=N W A U OO0 N

vvvvvv

vv;,,vv,

-/ GAP8 modelling

MACs/cycle
O NWbHUON ®

P~
o N &

4

b Y

<

<

b

R
MACs/cycle

N & O ®

Cout 1-16

v~"~v. “v""v\'

"v‘\

e Final Loss Function:

ETH:zurich

T1-31

K1-32

Future: GAP9, Occamy and many others...

min [,(W, 9) + AR(Q) ___, Regularizer, function of
W.,0

Trainable binary masks

21

PIT: Results

* 4 edge-relevant benchmarks (biosignals, keyword spotting).

« Up to 8x smaller and 7x faster models at iso-performance

M Seed Network A Hand-Tuned Network ~J¢- Size Regularizer -®~ OPs Regularizer
i [W # u
g0 PPG | 1o prG | § ECG
2 El0%
£ 7] E
] oy &
5 G 5
E 108 E
3 210,
5.0 5% paap 55 62 50 : : - i L 958 992 pccuracy 2%
B | 10 [['

8§10 SEMG = 2 | Kws KWS
@ £108 | N
§ £ S
o E 5.72x 107
5 108 | 1.8
£ g
2 Z104 . | 108

78 82 .86 .90 80 84 88 = 92 87 .88 .89 .90 .91 .92

Accuracy Accuracy Accuracy
ETH:zurich L STHBIBAY 22

PIT into the wild

 PIT has been now extended to 2D
networks for vision.

« Example: drone-to-human
pose estimation in low-power
nanodrones

« Same results of previous hand-tuned
network with 3x less memory, thanks to
PIT

 Collaboration with POLITO + UNIBO + ETHZ
+ IDSIA (Lugano) = presented @ ICRA23

o /
m h ;;, AAAAAAAA R STUDIORUM
Zurlc I‘.‘: UNIVERSITA DI BOLOGNA 23

Multi-Regularization Loss &9

* From the designer perspective the main goal is finding an optimal trade-off between
accuracy and complexity while satisfying the memory requirements s* of the target.

« We develop a novel multi-regularization loss formulation:

> :)\’S(Q)— I-: Size-Loss . Zerowhenthe

—— = target is met

% : ;LO(Q) ' OPs-LosS «— Used as proxy of

L energy consumption

Liask + Loreg

 The mutual importance of regularization loss terms is controlled with A and p:
e Ais fixed and such as to satisfy A>>p
* Wistweaked to explore different Accuracy vs Energy tradeoffs

ETHziirich (& weasrsmaisy 24

Multi-Regularization: Results

« Experiments on three edge relevant use-cases from MLPerf Tiny Benchmark Suite
which proposes reference optimized network implementations.

Image Classification-Cifar10 Visual Wake Word-MSCOCO Keyword Spotting-SCv2
87% * | 87% | = 94% " *
86%
86% 859 | O 2.2xReductiop * | 92% |
85% 84% * 90% -
. 0% X Seed s | Seed * Seed
) 83% @ 75;%’ 82% : gg;/:: e O @® 75%
82% 0 < 500/0 81% | 0 12.5% 86% O 50%
O 25% @ 6.25% O 25%
81% (9 50% : 84% | O
02 04 06 08 10 1.2 I N 1.0 1.5 2.0 2.5 3.0
OPs le7 OPs le6 OPs 1e6

* We obtain rich Pareto sets of architectures in the OPs vs. accuracy space, with memory
footprints spanning from 75% to 6.25% of baseline networks.

25

ETHzirich

Other works Q%

P

« Multi-constraint loss: a new NAS formulation to respect both a memory constraint
and a maximum latency

« Multi-precision search: a different precision can be chosen for each channel of a
tensor using gradient-descent.

« We support the export of quantized networks which can be imported from DORY (Deeploy soon) and executed on PULP
successfully!!!

« Heterogeneous-NAS: NAS for heterogenous hardware. It maps different part of a
layer to different accelerators

« Optimize network during NAS based on the type of layer/precision supported by each accelerator in a heterogeneous SoC
« Tested on DIANA AIMC and Digital Accelerators
« Accepted at ISLPED2023

26

ETHzirich =

What’s next? ¢.X

ETHzurich

Adding new hardware models to improve the NAS search (GAP9, Occamy...)

Insert the hardware in the loop to have a precise feedback of the network on the
MCU

Targeting full application, trying to optimize a task and not only a loss

Extend PIiNIO to include all methods and allow for automatic end-to-end
optimization pipelines

Interface the NAS tools with the deployment pipelines

@
nb

f 2 ALMA MATER STUDIORUM
Ij IIIIIIIIIIII BOLOGNA 27

ETHzirich =

Neural Network Deployment on Heterogeneous Systems

Moritz Scherer scheremo@iis.ee.ethz.ch

@pulp_platform

PULP Platform pulp-platform.org < e
Open Source Hardware, the way it should be! youtube.com/pulp_platform »

Neural Network Deployment

« Until very recently, residual CNNs dominated the state-of-the-art

 ResNets
« MobileNets (v1, v2, v3, ...)
« EfficientNets

* Dory was specifically designed for integer-quantized residual CNNs
« Support for two concurrent branches
« Support for integer arithmetic on the PULP Cluster
« Support for memory-aware layer-wise tiling

« Efficient parallelization strategies for various operators

* A match that led to advancements in the SoA several times over!

ETHzirich (0 suessmesmaigay o

Dory for Deployment — Challenges & Limitations 0%

* Dory deployment with accelerators is challenging
« Some layers have very low arithmetic intensity
« Depthwise convolutions, Matrix multiplications, ...

« Depth-first tiling helps to keep execution compute bound

 Siracusa: Executing IRB layers depth-first improves MobileNetv2 performance by 60%!

« Even more challenges for our deployment tools
« Transformers dominate all ML benchmarks
« Low-precision floating point training & inference on microcontrollers is gaining traction

« Occamy & MemPool are breaking ground on HPC PULP systems

30

ETHzirich &

Deeploy — Enabling Heterogeneous Deployment

Context-Free Expressive
Templates Data Types

Flow- and Pass- Flexible Operator Self-Contained
based Offloading Engines
Graph Editing

31

Deeploy — Context-Free Templates

« What does it take to run a convolution?
* Inputs & weights need to be pre-allocated
» Kernel templates need to run on all cores

» Qutputs need to be moved back

* Deeploy uses context-free templates
 DMA calls, etc. are generated by Deeploy

* Only kernel calls need to be implemented

DMA Transfer

Fork
Kernel

Kernel Kernel Kernel

Synchronization

DMA Transfer

PULPConv2D_8_Template = PULP2DConvTemplate("""

pulp_nn_conv${signatureString}(${data_in}, ${ctxtBuffer}, NULL, ${data_out}, ${weight}, ${mul}, ${add}, 1, ${log2D},
${dim_im_in_x}, ${dim_im_in_y}, ${ch_im_in}, ${dim_im_out_x}, ${dim_im_out_y}, ${ch_im_out}, ${dim_kernel x}, ${dim_k

ernel_y}, ${pads[@]}, ${pads(2]}, ${pads(1]}, ${pads(3]1}, ${strides[@]}, ${strides[1]}, 1, 1);
IIIIII]

ETHzurich ‘&

Deeploy — Expressive Data Types

* Deeploy uses expressive primitive types

 Immediate, Pointer, Struct & Future

* Bring your own immediate types
* Only need to implement a function that checks a value

« Compose your own types in pointers, structs, and futures

« Automatic strong type checking

« For your own immediate types, and all composed types

L Peornios
(MR ALMA MATER STUDIORUM
zuricn i FROTA o1 BOL0G W

Deeploy — Self-Contained Engines

 The PULP SoC is designed for adding accelerators
» General-Purpose Accelerators like the PULP Cluster
« Application-specific Accelerators like N-EUREKA , NE16, CUTIE, ITA, ...

« Compute engines are highly customizable

» Data types, Programming model, Memory access

* Deeploy keeps each engine self-contained

* Engine-specific, context-free templates, programming model, and data types

« The same engine in a different SoC works the same

LER e
LG ALMA MATER STUDIORUM
ZUFIC ZinP=ls VERSITA DI BOLOGNA

Deeploy — Simple Microcontrollers Q%

 This lets us generate network inference code! Type-checked, nested,
auto-generated CMSIS-NN structs

DeeployNetwork_Deeploy BUFFER_output_@_ctxt = (cmsis_nn_context){.buf = NULL, .size = 0};
DeeployNetwork_Deeploy_BUFFER_output_0_activation = (cmsis_nn_activation){.min = -64, .max = 63};
DeeployNetwork_Deeploy_BUFFER_output_@_fc_params = (cmsis_nn_fc_params){

.input_offset = 0, .output_offset = -64, .filter_offset = 0, .activation = {.min = -64, .max
DeeployNetwork_Deeploy_BUFFER_output_@_quant_params =

(cmsis_nn_per_tensor_quant_params){.multiplier = 9609216, .shift =
DeeployNetwork_Deeploy_BUFFER_output_0_input_dims = (cmsis_nn_dims){.n
DeeployNetwork_Deeploy BUFFER_output_@_filter_dims = (cmsis_nn_dims){.
DeeployNetwork_Deeploy_ BUFFER_output_@ output_dims = (cmsis_nn_dims){.
DeeployNetwork_Deeploy_BUFFER_output_@_bias_dims = (cmsis_nn_dims){.n

0}

arm_fully_connected_s8(
&DeeployNetwork_Deeploy_BUFFER_output_0_ctxt, &DeeployNetwork_Deeploy BUFFER_output_@_fc_params,
&Deep loyNetwork_Deeploy_BUFFER_output_0_quant_params, &DeeployNetwork_Deeploy_BUFFER_output_@_input_dims,
DeeployNetwork_Deeploy_BUFFER_28, &DeeployNetwork_Deeploy_BUFFER_output_0_filter_dims,
DeeployNetwork_Deeploy_BUFFER_32, &DeeployNetwork_Deeploy_BUFFER_output_0_bias_dims,
DeeployNetwork_Deeploy_BUFFER_classifier___QL_REPLACED__INTEGERIZE_UNSIGNED_ACT_PASS_0_add,
&DeeployNetwork Deeploy BUFFER output @ output dims, DeeployNetwork Deeploy BUFFER output 0);

ARM CMSIS-NN Convolution kernel call

ETH:zurich

Deeploy — Flexible Operator Offloading

« But only for single-core, single-memory-level systems

« Everything happens in the same execution context

Fabric
 Torunon a PULP Cluster, we have to Controller

* Move memory with the DMA
« Offload code to the cluster Interconnect

 From the Fabric Controller’s POV

 The DMA and Cluster work asynchronously

We need a way to model offloading and concurrent execution

m Iy S 0 srmn oy
zurich (& s

Interconnect

Cluster

RS &

Deeploy — Closures and Futures

« Deeploy uses closures to offload kernels

« Aclosureis a function that wraps a kernel call and its state

* Asynchronous computation produces Future-typed outputs
» Futures are values that “will be available later”
« Before generating a Future, we need to dispatch it

ot | - it e it Fabric
efore accessing a Future, we need to resolve | Controller

» Future types provide code to dispatch and resolve

« Futures enable local synchronization Interconnect Interconnect
* No OS, tasks or threads required — but supported

Futures allow us to address engines concurrently

Deeploy —Tiling & Graph Manipulation

* Deeploy comes with a flexible & powerful graph editing framework

e Passes are used for match-based transformations

« “Replace all occurrences of A->B with C”

* Flows are used for graph-level information propagation

« Tensor type inference

* Bias pushing

« Tensor liveness analysis

* Deeploy’s tiling algorithm combines passes and flows

» And allows for depth-first tiling, as well!

‘1l /iﬂ;ﬁ ALMA MATER STUDIORUM
E'HZUI'ICh Ay UNIVERSITA DI BOLOGNA

Deeploy — Tile Constraint Flow

« We find our pattern with a pass

* Tiling constraints are computed with a flow
) = PW-Constraints(Constraints(A))
« Constraints(C) = DW-Constraints(Constraints(B))
« Constraints(D) = PW-Constraints(Constraints(C))
« Constraints(E) = Addition-Constraints(Constraints(A), Constraints(D))

« Constraints(B

« Using ORTools, we can compute a correct tiling strategy

—_— PW-Conv
A B C 1x1 D E
ETHziirich ‘0 susoameseioa . %?j

Deeploy — Graph Tiling

« With our tiling solution, implement a replacement pass
» Duplicate subgraph
« Add memory transfer nodes

* And the rest of the framework manages code generation!

PW-Conv
1x1

ETHziirich wasanses

Deeploy — Ongoing and Future Work 0%

* Engine support is growing, and an open-source release is on the horizon
* Implemented: ARM Cortex-M, MemPool, ITA, PULP Cluster

« WIP: N-EUREKA, Floating point support, ...
« Future Work: Multi-Cluster systems like Occamy, Carfield, ...

* Deeploy is designed with extensions in mind
* Flows, Futures, Closures, and Tiling were designed as extensions

« New engines and systems are crucial and easy to get started on

« We are looking for contributors!

« Talk to me, Victor, Francesco, or Alessio — there’s plenty to do!

LER e
LG ALMA MATER STUDIORUM
ZUFIC ZinP=ls VERSITA DI BOLOGNA

Thanks for the attention

