Carfield: The Open-Research Platform for Safety, Resilient and Predictable Systems

Integrated Systems Laboratory (ETH Zürich)
University of Bologna

Angelo Garofalo agarofalo@iis.ee.ethz.ch
& the Carfield team

PULP Platform
Open Source Hardware, the way it should be!
Why An Automotive-Oriented PULP System?

- ECUs are moving towards domain, zone architectures (more than simple MCUs)
- Systems require higher real-time processing performance, enhanced safety & security features
- Interesting challenges to be addressed (...and not only limited to Automotive world 😊)
Automotive Trends: Platforms on the Market

• Microcontroller class of devices
 • Infineon AURIX Family MCUs, TC32x (Low-Power) – TC39x (ADAS)
 • Control tasks, motor control, sensor acquisition and data processing (including Radar processing)
 • Features: 1-to-6 32-b HP TriCore CPU, lockstepped cores, HW I/O monitor, dedicated accelerators

• Powerful real-time architectures
 • ST Stellar G Series (based on ARM Cortex-R cores)
 • Domain controllers and zone-oriented ECUs
 • Features: HW-based virtualization, Multi-core Cortex-R52 (+ NEON) cluster in split-lock, vast I/Os connectivity

• Application class processors
 • NXP i.MX 8 Family
 • ADAS, Infotainment
 • Features: Cortex-A53, Cortex-A72, Cortex-M4, HW Virtualization, GPUs
Goals of The Project

- Develop a pre-competitive Automotive SoC
 - Scalable and configurable architectural template
 - SW stack to address requirements of RISC-V based automotive applications

- Collaborative research roadmap for automotive-driven computing architectures
 - Functional safety
 - Hardware/Software Acceleration for critical kernels
 - Real-Time and Predictable Systems
 - Fast-Interrupts and Virtualizations

- Open-Source
 - Academic: ● Reduce “getting up to speed” overhead for partners; ● Enables fair and well controlled benchmarking
 - Industry: ● Reduces the NRE, ● faster innovation path, ● helps exchange of information across NDA walls, ● great for Marketing & Training
We Started Joining Forces

• Project’s Leaders
• Digital Systems Design, PULP, Open-Source, RISC-V
• Processors/IPS/Interconnects/Interrupts/HW Acceleration
• SW stack, compilers, runtime and optimized routines
 ➢ Real-Time (RT) Systems and On/Off-Chip RT Communication
 ➢ Safe/Secure Cyber-Physical Systems
 ▪ Virtualization-assisted systems, OS, Hypervisors, RISC-V
 ▪ Security of Cyber-Physical Systems
 o Intel16 FinFet technology (for the first prototype)
 o ASIC design support and packaging

 o Supporters: STMicroelectronics, BOSCH
Architectural Pillars of The Project

- We start from our PULP architectural ball-park
- Host architecture
 - 64-bit CVA6 processors → non-critical applications (GPOs, e.g. Linux)
 - 32-bit CV32E lock-stepped cores → safety-critical applications (RTOSs)
- Pluggable Hardware Root-of-Trust (RoT) based on OpenTitan (lowRISC open-source prj)
- Wide set of peripherals: SPI, I2C, I2S, ETHERNET (RMII), CAN, HyperRAM..
- Pluggable Heterogeneous Accelerators
 - Heterogeneous parallel programmable clusters [Spatz, Snitch/PULP clusters, MemPool..]
 - ISA extensions (FP, INT, SIMD, Vector) and custom data-paths (TensorCores, DNN,..)
- Flexible Programming model
 - Linux + OpenMP for non-critical code
 - RTOS (FreeRTOS, AUTOSAR, Erika) + bare-metal task offloading for safety-critical code
Carfield: Architectural Template Based on Fully Open IPs

Main Computing and I/O System

Accelerators Domain

SAFETY ISLAND

DATA SPM INSN SPM

CV32E4 CV32E4 CV32E4

TRI-LOCKSTEP

Safe Hart

CLIC INTC

SECURITY ISLAND

SPI JTAG
SRAM wECC BOOT ROM
IBEX RV-PLIC
SHA2 KEYS TRNG
AES128 OTPS K-H-MAC
WATCHDOG MAILBOXes

L2 MULTI-BANK SPM

BK BK
BK BK
BK BK
BK BK
BK BK
BK BK

ECC

MULTI-PORT (AXI)

PREDICTABLE AXI INTERCONNECT

I/Os AND PERIPHERALS

UART QSPI
Serial Link CAN
GPIOs ETH
WATCH DOG I2C
SPI TIMFRES

LAST LEVEL CACHE (LLC)

HYPERBUS MEMORY CONTROLLER

MMU

D$/$I$ wECC

CVA6 wH-EXT

FPU

CLIC INTC

HOST SUBSYSTEM

MMU

D$/$I$ wECC

CVA6 wH-EXT

FPU

CLIC INTC

iDMA

TLB

FP VECTOR CLUSTER (SPATZ)

L1 MULTI-BANKED SPM

LOCAL INTERCO

CTRL CC

DMA

PE0 CC0 VRF

PE1 CC0 VRF

I$

LO1 MAL SUBSYSTEM

DMA

RV0 RV1 ... RV (N-1)

Tensor Core

HMR

I$
Host-Domain for Non-Critical Linux-Based Applications
Host-Domain for Non-Critical Linux-Based Applications

- Coherent Cluster based on a Custom Interconnect targeting 2 to 4 CVA6 processors
- CVA6: Application mid-end processor
 - Linux-capable processor
 - Supports 48-bit virtual memory MMU (Sv48)
 - M, HS (Hypervisor-extended Supervisor) and U privilege modes;
 - Tightly integrated D$ and I$;
 - (22 FDX) Freq.: 1+ GHz; Area: 1.5 MGE
- Shared Last Level [Data] Cache (LLC)
- HyperBUS Controller for off-chip HyperRAM access
How Do We Handle Safety-Critical and Real-Time Tasks?
• Safety-critical applications running on top of a RTOS
• Three CV32E40 cores in lockstep
• ECC protected scratchpad memories for instructions and data
• CLIC controller for fast and configurable interrupt handling
• AXI-4 port to communicate with system
Predictable On-Chip Communication (AXI RT)

- Minimal Intrusive Solution
 - No huge buffering, limited additional logic

- AXI Burst Splitter
 - Equalizes length of transactions to avoid unfair BW distribution

- AXI Cut & Forward
 - Configurable chunking unit to avoid long transactions influencing access time to the XBAR

- AXI Bandwidth Reservation Unit
 - Predictably enforces a given max nr of transactions per time period (to each master)
 - Per-address-range credit-based mechanism
 - Periodically refreshed (or by user)

- Solution verified in systematic worst-case Real-Time Analysis

[Restuccia et al. DAC 2020]

[Pagani et al. ECRTS 2019]
1. Two Address Mapping Modes

- Non-interleaved
- Interleaved

2. Dynamic Address Mapping by Address spaces, eg:

- Port A, interleave
- Port A, non-inter
- Port B, interleave
- Port B, non-inter

Point to the same L2 Mem space

3. L2 Mem diagram

- Currently we set 2 bank groups, namely 4 banks
- Software-side determine which port and which mode to use
 - By using different address space
What About Security and Data Encryption/Decryption?
• Root of Trust
 • Stores Cryptographic Secrets

• Early Secure Boot Stages
 • Verify Cryptographic Signatures and Measurements before unlocking next boot stages

• Cryptographic Services
 • Available to the whole System through Mailboxes
 • Set of Crypto-Accelerators
 • SHA2, AES128, etc.

Derived from the OpenTitan project by lowRISC
The I/O Communication

CAN FD

ETHERNET
The Acceleration Clusters

The Acceleration Clusters

10years of PULP Event, Lugano, 5 June 2023
The Spatz Cluster for FP Vector Workloads

Spatz Configuration

- Compact 64-bit vector processing unit based on RVV Zve64d
- Multi-precision FPU support
 - FP64, FP32, FP16, FP8, SDOTP operations supported
- Physically-driven implementation: small footprint, high operating frequency, high scalability
The HMR Cluster for DNN-Oriented INT/FP Workloads

- 12x 32-bit RISC-V cores with support for DSP/QNN ISA Extensions
- Single-Cycle Multi-Banked Tightly-Coupled Data Memory
- Hardware Synchronizer
- DMA Controller for Explicit Memory Management
- L1-coupled TensorCore (RedMule)
- Runtime-configurable Dual/Triple core redundancy mode + hw/sw-based recovery
Carfield Goes to Intel FinFet Technology

- First test-chip out
 - Intel 16 FinFet technology
 - BGA Flip-chip packaging

Spatz Cluster Macro

NOW Platform in Place

FPGA Emulation available

Safety Island

DRAM ctrl

Tape-Out Date:
11 Nov 2023

March 2023

Q1 2024
The (Near) Future Research Roadmap

- SW Stack Development
- Design Optimizations
- Concurrent OS Support for RTOS and GPOS
- Virtualization Assisted Processors
- Real-Time analysis of I/O communication
- Area-Optimized Safety solutions for RISC-V processors
- Reconfigurable Architectures for Image Processing
- Radiation tests
Conclusion

- Carfield: Open-Source Research Platform for Safety, Predictable and Secure Systems
 - Hardware Architecture based on fully open-source IPs
 - Complete Software stack (open-source)
- Collaborative Research opportunities among universities and industry
- First prototype soon to silicon-prove initial architecture and get feedback for next generation platform

[github.com/pulp-platform/carfield]
Thank you!
References

