

GVSOC simulator

Germain Haugou Nazareno Bruschi haugoug@iis.ee.ethz.ch nazareno.bruschi@unibo.it

PULP Platform

Open Source Hardware, the way it should be!

@pulp_platform >>
 pulp-platform.org **
youtube.com/pulp_platform >>

Why another simulator ?

All-in-one simulator for Pulp chips

- SW development and debug
- Timing and power analysis
 - Benchmarking and profiling
 - Architecture exploration

Trade-off between simulation speed and accuracy:

- 20 mips with timing shared between simulated cores
- 100 mips without timing
- Timing under 10% of error for nominal cases, 20% for corner cases

Power under 20% of error

Models

Component-based

C++

- Lifecycle (build, start, stop, etc)
- Signatures for interfaces
- Set of methods for each signature
- Callbacks for remote calls
- Descriptor in Python for composition

Generators

Python scripts to describe system hierarchy

Component-based

ETH zürich

```
Instantiate, configure and bind components
```

```
Suitable for quick architecture exploration
```

User properties for command-line customization

self.add_user_property("size", 16*1024)
I1 = Memory(size=self.get_user_property("size")

--target-property chip/cluster/l1/size=32*1024

Full system simulation

Support for full systems with chips and devices

Devices are available: flash, rams, cameras, audio devices.

Based on generators

Generator reuse for complex system, e.g. a multi-board system

class Gap9_evk(tree.Component): def __init__(self, parent, name): Chip = Gap9() Flash = Hyperflash(size=8*1024*1024) self.bind(chip, "hyper0", flash, "input")

board1 = Gap9_evk()
board2 = Gap9_evk()
self.bind(board1, "uart0", board2, "uart1")

Simulation engine

- **Event-based simulation**
- Seen as cycle-based from SW
- Callbacks executed at specific cycles
- Clock engines for scheduling callbacks in frequency domains
- Global time engine to schedule clock engines
- Stubs to synchronize cycles between clock engines

Functional modeling

Target is 100% equivalence with real system

A binary can run unmodified on simulator and real system

- Model can be bit-accurate if needed
- Clock usually not modeled
- Everything visible from SW is modeled
- Some models can be fully accurate, e.g. padframe interface, or fll.

Timing modeling

All models are timed: instructions, memory accesses, DMAs, contentions, register accesses, etc.

Callbacks scheduled at specific cycles to reproduce expected timing

Memory-mapped requests

Synchronous

Go through all components in same cycle

Latency immediately reported

Asynchronous

ETH zürich

Go through all components in several cycles

Any component can delay the grant or the response

Latency created with callback scheduling

Masters must supports both behaviors

Any slave can switch from synchronous to asynchronous

Frequency scaling

Models manipulate cycles

- Automatic frequency scaling
- Event remains scheduled for same cycles
- Clock engine position in time engine automatically updated
- Stub automatically convert cycles when crossing domains
- Models can manipulate several clock engines

10

Power models

ETH zürich

- Models can add power sources
 - Background power for leakage or background activity (e.g. idle)
 - Energy quantum to assign a cost to an event (e.g. and instruction).
 - Power values interpolated from calibration tables
 - Interpolated from current temperature, voltage and frequency
- Hierarchical report for average power
- GUI for Instantaneous power

cluster 0 power 0,00		
pe0	Kertonyskistridel Bol	
pe1	KerConv5x55tritie1, Bool	1996999 9 1
pe2	Kerfonzásásteidel Ban 🕽	1939) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
peā	KerCon/SSSStridel Boel	IGENERAL
pe4	Exercities Stride: Book 2	
pe5	C KerCon/sk55trids1_800_0	16666561
pe6	KerCenvsxSStridel Ba+	
pe7	RerCoavitedStride1 Rev 0	1
pe8		

GVSOC API and cosimulation

GVSOC C++ API for external control

To instantiate GVSOC and control its execution

To synchronize timing

ETH zürich

Used for cosimulation, to use device models for HW verification.

• Device models and tests can be used to verify a chip and its model

GTKWave support

VCD (or FST) traces generated by models events (instructions, DMA transfers, etc)

Gtkwave script generated to organize signals

Limited to post-processing and small number of events.

Signals	Waves									
Time		1 sec 2 sec	3 sec	4 sec	5 sec	5 sec 7 s	sec 8 sec	9 sec 16 :	sec 11 sec	12 -
overview {										
soc {	Concernance of the second s									
fc	I ACTIVE	ACTIVE		AC+						
udma		*								
period	13882			(1)))/((()))19479						
} soc										
cluster {										
pe_0					ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	4
pe_1					ACTIVES		ACTIVE		1	
pe_2					ACTIVE		ACTIVE		1	
pe_3	-				ACTIVE		ACTIVE			
pe_4					ACTIVE		ACTIVE			
pe_5					ACTIVE		ACTIVE		2	
pe_6					ACTIVE					
pe_7					ACTIVE			*	The second secon	
dma									*)	
period	13882				100000000000000000000000000000000000000					

ETH zürich

On-going work to replace gtkwave and support huge number of events.

Events stored in a database with pre-computed averaging at multiple levels for fast queries.

Swap mechanism with Iz4 compression for better footprint.

Handle smoothly hours of simulations with billions of events

Linux support

The ISS supports rv64imafdc and MMU

It can boot Linux (until console entry) in 55s at 70Mips

On-going work to bring it to 120Mips without timing.

Will be connected soon to pulp cluster

GDB support

P P

GDB server for gdb connection

Each core is seen as a thread

All gdb commands available

- Id Target Id Frame
- * 1 Thread 1 (pe0) eu_evt_maskWaitAndClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:173
- 2 Thread 2 (pe1) eu_evt_maskClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:132
- 3 Thread 3 (pe2) eu_evt_maskClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:132
- 4 Thread 4 (pe3) eu_evt_maskClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:132
- 5 Thread 5 (pe4) eu_evt_maskClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:132
- 6 Thread 6 (pe5) eu_evt_maskClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:132
- 7 Thread 7 (pe6) eu_evt_maskClr (evtMask=4) at archi/chips/gap9_v2/event_unit/event_unit.h:132
- 8 Thread 8 (pe7) 0x1c010738 in __udivmoddi4 (rp=<synthetic pointer>, d=<optimized out>, n=7) at riscv-gnu-toolchain/riscv-gcc/libgcc2.c:1077
- 9 Thread 9 (pe8) pi_cl_team_nb_cores () at kernel/chips/gap9/cluster/cluster_task.h:65
- 10 Thread 10 (mchan) 0x00000000 in ?? ()
- 11 Thread 11 (fc) ___pi_task_sleep_loop () at kernel/task_asm.S:62

What can we do with these features?

WiPLASH EU project case 🕥 WiPLASH

- Analyze system bottlenecks in AI applications: computation wall vs memory wall •
 - Add accelerators to speed-up the execution 1.
 - Increase the number of cores 2.
 - Execute end-to-end networks 3.
- Proposal •
 - Analog In-Memory Computing based accelerator 1.
 - Heterogenous (digital-analog) multi-cluster PULP architecture configuration 2.
 - Real-life CNN inference 3.
- We need a simulator to quickly get accurate timing results •
 - Extend GVSOC to support analog accelerator, multi-cluster architecture and interconnect subsystem .

Background

Background

Analog In-Memory Accelerator

- Fixed Computation Latency (Analog)
- 256x256 Crossbar Size
- 64 byte/cycle Streamers Bandwidth
- Digital (data streams) and analog (MVM) tasks can be overlapped

Component model

ETH zürich

C++ class methods

```
# include <ima.hpp>
// declare the register map
int32_t reg_map = [IMA_REG_MAP_SIZE]
void access_ima_reg_map(req)
// extract info from incoming req
offset = req->offset;
if req->is write == true
       reg map[offset] = req->data;
       req->data = reg map[offset];
// trigger controller
if offset == IMA TRIGGER
       ima_trigger();
```

Cluster

- 1 IMA
- 16 RISC-V cores (PULP extensions)
- 1 MB of L1 Memory (Tightly-Couple Data Memory)
- 1 DMA
- Cores, DMA and IMA tasks can be overlapped

Architecture building

ETH zürich

Python scripts

...

def build cluster(clust, config): # configuration file in JSON format info = extract info(config) # declare RISCV cores for id in range(info.nb_cores): cores[id] = RV_CORE(info.core) # declare TCDM tcdm = TCDM(info.tcdm) # declare accelerator ima = IMA(info.ima) # declare crossbar xbar = XBAR(info.xbar) # bind components clust.bind(ima.master, xbar.slave) clust.bind(xbar.master, tcdm.slave)

- 512 clusters (CL) @ 1 GHz
- On-Chip Hierarchical Interconnect
 - 4 interconnect levels (L1, L2, L3, Wrapper)
 - 512 Gbit/s bandwidth each
 - 4 cycles latency each
- Off-Chip HBM link 512 Gbit/s, 100 cycles latency

Architecture declaration

ETHzürich

JSON files

```
"system_interconnect":
"type": "hierarchical",
"structure":
        "L1":
               "nb_masters": 4,
               "nb_slaves": 4,
               "model": "axi xbar",
               "bandwidth": 64,
               "latency": 4
        , {
        ...
```

Use case

ETH zürich

Execution model

Results

Consideration

ETH zürich

Future work

Power modeling

Full chip support (Gap) with associated RAM and flash

GVSOC API

Better interoperability with other simulators

Host emulation

More Pulp models (Snitch, Occamy, etc), Linux connection

Model contributions

Clear APIs

Documentation

Thank you!

ETHzürich (B) Alma mater studiorum