

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

How far (edge) can we go? Part 2

Dr. Lorenzo Lamberti Ilamberti@iis.ee.ethz.ch 2025 IEEE/IFIP Network Operations and Management Symposium Honolulu, HI, USA

@pulp_platform

pulp-platform.org

youtube.com/pulp_platform

Slides credits. Thanks to: Francesco Conti, Daniele Palossi, Angelo Garofalo, Luca Benini, Victor Jung, Marco Fariselli.

PULP Platform Open Source Hardware, the way it should be!

ETH zürich

I'm Lorenzo Lamberti, Postdoctoral Researcher @ ETH Zürich and IDSIA (2025-)

- TinyML
- Ultra-low power devices
- miniaturized robotics

Tutorial rules:

Please interrupt me! Happy to take any question ©

About me

Prev. post-doc @ UNIBO, PhD and master @ UNIBO

Polytechnic of Zürich (ETHZ)

IDSIA in Lugano (USI/SUPSI)

Computing is Power Bound: from the Cloud...

Largest datacenter <150MW

GPT-4 (OpenAl'23) Training Compute: 2.1E+25 (FLOP)

Sevilla 22: arXiv:2202.05924, epochai.org

Machine Learning: 10x every 2 years

Lorenzo Lamberti

Edge AI processor market analysis: predicted revenue of \$9,566.30 million in the 2022–2030 timeframe.

4

Embodied AI: Artificial Intelligence everywhere

Automotive

Smart Glasses

Miniaturized robots

Why computing at the very edge over streaming to the cloud ?

The ambitious aim of this talk

How can we bring artificial intelligence at the very edge?

We will answer the following questions:

1. how to deploy AI on sub-100mW MCUs?

2. What challenges we address at HW and SW level

Outcomes: enabling AI multi-tasking (peak >400FPS) within 100mW

An extreme edge computing case: miniaturized drones $\stackrel{\mathfrak{ses}}{\stackrel{}{\mapsto}}$

Use case: autonomous Unmanned Aerial Vehicles (UAVs)

Surveillance & Inspection

Rescue missions & disaster management

Precision agriculture

Entertainment

Use case: autonomous Unmanned Aerial Vehicles (UAVs)

Surveillance & Inspection

Rescue missions & disaster management

Autonomous palm-sized UAVs: advantages

Safe human-

robot

interaction

Nano-UAVs

Reduced cost

R

Crazyflie 2.1 SKU: 114991551 \$225.00 | \$281.25 inc VAT

ETH zürich

Miniaturization challenge and UAV taxonomy

UAVs taxonomy					
Vehicle class Ø : Weight [cm:kg] Power [W] Onboard Device					
Standard-size	≥ 50 : ≥ 1	≥ 100	Desktop		
Micro-size	~25 : ~0.5	~50	Embedded		
Nano-size	~10 : ~0.01	~5	MCU		

ETH zürich

Miniaturization challenge and UAV taxonomy

UAVs taxonomy						
Vehicle class	Ø : Weight [cm:kg]	Power [W]	Onboard Device			
Standard-size	≥ 50 : ≥ 1	≥ 100	Desktop			
Micro-size	~25 : ~0.5	~50	Embedded .			
Nano-size	~10 : ~0.01	~5	MCU			

ETH zürich

≥ 100

~50

~5

Total

power

≥ 50 : ≥ 1

~25:~0.5

~10:~0.01

Size

Standard-size

Micro-size

Nano-size

Desktop

Embedded

MCU

Standard-size **UAVs** taxonomy Vehicle class Ø: Weight [cm:kg] Power [W] **Onboard Device** Standard-size $\geq 50 : \geq 1$ ≥ 100 Desktop >1kg Micro-size ~25:~0.5 ~50 Embedded > 50cm ~10:~0.01 ~5 MCU Nano-size Total Onboard **Micro-size** Size processing power ~0.5kg ~25cm Computing power budget is 5% Nano-size of the total power envelope 86% ~10g Power actuation 9% Control Sensing & ~10cm actuation computing R. J. Wood et al., Progress on "Pico" Air Vehicles. 2017. Alma mater studiorum Università di Bologna **ETH** zürich

Miniaturization challenge and UAV taxonomy

Standard-size **UAVs** taxonomy Vehicle class Power [W] **Onboard Device** Ø: Weight [cm:kg] $\geq 50 : \geq 1$ Standard-size ≥ 100 Desktop >1kg Micro-size ~25:~0.5 ~50 Embedded > 50cm ~10:~0.01 ~5 MCU Nano-size Total Onboard **Micro-size** Size processing power ~0.5kg Tradeoff between power consumption and processing capabilities ~25cm Computing power budget is 5% Nano-size of the total power envelope 86% ~10g Power actuation 9% Control Sensing & ~10cm actuation computing R. J. Wood et al., Progress on "Pico" Air Vehicles. 2017. Alma mater studiorum Università di Bologna **ETH** zürich

Miniaturization challenge and UAV taxonomy

I orenzo I amberti

Miniaturization challenge and UAV taxonomy

UAVs taxonomy						
Vehicle class	Onboard Device					
Standard-size	tandard-size ≥ 50 : ≥ 1		Desktop			
Micro-size	~25 : ~0.5	~50	Embedded			
Nano-size	~10 : ~0.01	~5	MCU			

Computing power budget is 5% of the total power envelope

R. J. Wood et al., Progress on "Pico" Air Vehicles, 2017.

Small and low-quality sensors

Autonomous Nano-UAVs: an extreme edge computing case

Nano-UAVs have a challenging trade-off between:

- **power** consumption (i.e., $\leq \sim 100 \text{ mW}$)
- **real-time** onboard processing (e.g., $\geq \sim 10$ frame/s)

Extreme edge computing!

How we enable AI under these stringent constraints? We need high-energy efficiency!

How to enable extreme edge computing?

How to enable extreme edge computing?

Energy efficiency through heterogeneity

The Parallel Ultra Low Power (PULP) paradigm:

Energy efficiency through heterogeneity

The Parallel Ultra Low Power (PULP) paradigm:

All open-source: https://github.com/pulp-platform/pulp

ETH zürich

History of the PULP chips

History of the PULP chips

PULP SoCs

GAP8 [1] -- COTS:

- 1+8 RISC-V cores
- VDD 1 1.2V

Domain	SoC	Cluster	
Max freq.	250 MHz	175 MHz	(

I/O	SoC Domain	Cluster Domain				
I2S	FC Core		5	6	7	8
SPI			Ŭ			
CPI	uDMA		1	2	3	4
I2S	L2 SRAM [512 kB]					
			D	MA 🚽	L1 [1:	28kB]

Independent frequency domains *"Turn-on when you need"*

Heterogeneous Compute Units

• General Purpose RISC-V Cores (FC + Cluster)

Hierarchical Memory Architecture

• L1: 128kB – 1 Cyc/Access

Core Memory

- L2: 1.5MB 10-100 Cyc/Access
- L3: >2MB 100-1000 Cyc/Access

Accelerator

Legend

Periph

[1] E. Flamand et al., "GAP-8: A RISC-V SoC for AI at the Edge of the IoT," IEEE ASAP, 2018.

[2] D. Rossi, et al. "Vega: A ten-core SoC for IoT endnodes with DNN acceleration and cognitive wake-up from MRAM-based state-retentive sleep mode." JSSC, 2021.

ETH zürich

26

PULP SoCs

P D

GAP8 [1] -- COTS:

- 1+8 RISC-V cores
- VDD 1 1.2V

Domain	SoC	Cluster
Max freq.	250 MHz	175 MHz

Independent frequency domains *"Turn-on when you need"*

Heterogeneous Compute Units

- General Purpose RISC-V Cores (FC + Cluster)
- GAP9: 4 Shared FPUs (half/single precision)
- GAP9: Conv/MatMul HW Accelerator (NE16)

Hierarchical Memory Architecture

5

6

2

4 Shared FPUs

L1 [128kB]

3

Accelerator

GREENWAVES

TECHNOLOGIES

8

• L1: 128kB – 1 Cyc/Access

Core Memory

- L2: 1.5MB 10-100 Cyc/Access
- L3: >2MB 100-1000 Cyc/Access

Legend

Periph

[2] D. Rossi, et al. "Vega: A ten-core SoC for IoT endnodes with DNN acceleration and cognitive wake-up from MRAM-based state-retentive sleep mode." JSSC, 2021.

ETH zürich

Alma mater studiorum Università di Bologna

Lorenzo Lamberti

GAP9[2] -- COTS:

Domain

Max freq.

12S

SPI

CPI

12S

I/O

1+9 RISC-V cores

VDD 0.6 - 0.8V

Accelerator: NE16

SoC

370 MHz

SoC Domain

FC

Core

uDMA

L2 SRAM

[1.5 MB]

L3 eMRAM [2MB]

Cluster

400 MHz

Cluster Domain

9 Cluster

Ctrl

NE16

CNN

Acceler.

Cluster

DMA

How to enable extreme edge computing?

Parallel execution

1. Single Instruction Multiple Data (SIMD)

2. Multi-core architecture

Cluster Domain					
Core 5	Core 6	Core 7	Core 8		
Core	Core	Core	Core		
1	2	3	4		

1. SIMD vector processing (Xpulp Extensions)

Single Instruction Single Data (SISD) vs. Single Instruction Multiple Data (SIMD)

ETH zürich

Vectors are either

Target int8 execution \rightarrow benefits of SIMD Instructions:

- Improve register file use (1 register holds 4 values)
- Parallelize operations (4x speed gain)
- Optimize data transfers (4x data transferred at once)
 increase the performance of most DSP algorithms → including AI

Useful for NN as they are tolerant to low-bitwidth operands

2. PULP \rightarrow Performance + Efficiency + Flexibility

As VDD decreases, operating speed decreases as well.

However efficiency [ops/mW] increases \rightarrow more work done per Joule

Until leakage effects start to dominate ٠

More units in parallel

- Get performance up (if you can keep them busy)
- Energy efficiency stays high!

Cluster Domain					
Core	Core	Core	Core		
5	6	7	8		
Core	Core	Core	Core		
1	2	3	4		

N cores running at moderate f, low Vdd are more energy efficient than a single core at N×f, high Vdd

Slide credits: Francesco Conti

How to execute a CONV layer on a parallel (multi-core) computing architecture?

Convolution layer as a Matrix Multiplication

Convolution layer as a Matrix Multiplication

im2col Convert to matrix multiplication using the **Toeplitz Matrix (im2col operation)**

Toeplitz Matrix (w/ redundant data)

5

Matrix Mult:

Convolution layer as a Matrix Multiplication

im2col Convert to matrix multiplication using the **Toeplitz Matrix (im2col operation)**

ALMA MATER STUDIO

ETH zürich

Data is repeated

This is not for free!

Cons: Data duplication + MemoryBandwith + extra im2col operation.Pro: the operation needed is only a dotproduct

$$\boldsymbol{O} = \boldsymbol{r} \cdot \boldsymbol{c} = \sum_{i=1}^{N} c_i \boldsymbol{w}_i$$

Improve im2col performance with data layout

Two types of memory layout: CHW, HWC

Data layout does not directly affect the mat-mul performance, but..

2D conv as a General Matrix-Vector Multiplication (GEMV)

Input 🗙

00	01	02	03	04	05
10	11	12	13	14	15
20	21	22	23	24	25
30	31	32	33	34	35
40	41	42	43	44	45
50	51	52	53	54	55

ETH zürich

$$\mathbf{Y}[i,j] = \Sigma(w[0:S,0:R] * \mathbf{x}[i:i+S,j:j+R])$$

39

2D conv as a General Matrix-Vector Multiplication (GEMV)

 $\mathbf{y[i,j]} = \mathbf{\Sigma}(\mathbf{w[0:S,0:R]} * \mathbf{x[i:i+S,j:j+R]})$

ETH zürich

```
40 Slide credits: Francesco Conti
```


 $\mathbf{y[i,j]} = \mathbf{\Sigma}(\mathbf{w[0:S,0:R]} * \mathbf{x[i:i+S,j:j+R]})$

Slide credits: Francesco Conti

 $\mathbf{y[i,j]} = \mathbf{\Sigma}(\mathbf{w[0:S,0:R]} * \mathbf{x[i:i+S,j:j+R]})$

 $\mathbf{y[i,j]} = \mathbf{\Sigma}(\mathbf{w[0:S,0:R]} * \mathbf{x[i:i+S,j:j+R]})$

													IMZ	COLX		
						00	01	02	10	11	12	20	21	22		
						01	02	03	11	12	13	21	22	23		
						02	03	04	12	13	14	22	23	24		
Input>	(03	04	05	13	14	15	23	24	25	Linea	arized w
00	01	02	03	04	05	10	11	12	20	21	22	30	31	32	00	
10	11	12	13	14	15	11	12	13	21	22	23	31	32	33	01	
20	21	22	23	24	25	12	13	14	22	23	24	32	33	34	02	
30	31	32	33	34	35	13	14	15	23	24	25	33	34	35	10	
10	/1	/2	/3	11	15	20	21	22	30	31	32	40	41	42	11	
40	41	42	-+		45	21	22	23	31	32	33	41	42	43	12	
50	51	52	53	54	55	22	23	24	32	33	34	42	43	44	20	
						23	24	25	33	34	35	43	44	45	21	
						30	31	32	40	41	42	50	51	52	22	
						31	32	33	41	42	43	51	52	53		
							33	34	42	43	44	52	53	54		
	<u>A lo</u>	ot of (<u>data</u>	<u>dup</u> l	lication!	33	34	35	43	44	45	53	54	55		

Im2Col transformation

ETH ZÜRICH

 $\mathbf{y}[i,j] = \mathbf{\Sigma}(\mathbf{w}[0:S,0:R] * \mathbf{x}[i:i+S,j:j+R])$

Lorenzo Eamberti

 $y[i,j] = \Sigma(w[0:S,0:R] * x[i:i+S,j:j+R])$ ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA **ETH** zürich

Slide credits: Francesco Conti

Let's bring in C>1, still considering M=1 for simplicity Where $C = N^{\circ}$ input channels, $M = N^{\circ}$ output channels

Slide credits: Francesco Conti

Linearized w

00

01

02

10

Let's bring in C>1, still considering M=1 for simplicity Where $C = N^{\circ}$ input channels, $M = N^{\circ}$ output channels

Lorenzo Lamberti

Slide credits: Francesco Conti

Let's bring in C>1, still considering M=1 for simplicity Where $C = N^{\circ}$ input channels, $M = N^{\circ}$ output channels

00	01	02	10	11	12	20	21	22	 21	22	00	01	02	10	11	12	20	21	22
01	02	03	11	12	13	21	22	23	22	23	01	02	03	11	12	13	21	22	23

Im2col 🗙

ETH zürich

Lorenzo Lamberti

 $y[m,i,j] = \Sigma(w[m,0:C,0:S,0:R] * x[0:C,i:i+S,j:j+R])$

Linearized w

...

Considering M = 1 (M = N° output channels)

Alma mater studiorum Università di Bologna

00	01	02	10	11	12	20	21	22	21	22	00	01	02	10	11	12	20	21	22
01	02	03	11	12	13	21	22	23	22	23	01	02	03	11	12	13	21	22	23
02	03	04	12	13	14	22	23	24	23	24	02	03	04	12	13	14	22	23	24
03	04	05	13	14	15	23	24	25	24	25	03	04	05	13	14	15	23	24	25
10	11	12	20	21	22	30	31	32	31	32	10	11	12	20	21	22	30	31	32
11	12	13	21	22	23	31	32	33	32	33	11	12	13	21	22	23	31	32	33
12	13	14	22	23	24	32	33	34	33	34	12	13	14	22	23	24	32	33	34
13	14	15	23	24	25	33	34	35	34	35	13	14	15	23	24	25	33	34	35
20	21	22	30	31	32	40	41	42	 41	42	20	21	22	30	31	32	40	41	42
21	22	23	31	32	33	41	42	43	42	43	21	22	23	31	32	33	41	42	43
22	23	24	32	33	34	42	43	44	43	44	22	23	24	32	33	34	42	43	44
23	24	25	33	34	35	43	44	45	44	45	23	24	25	33	34	35	43	44	45
30	31	32	40	41	42	50	51	52	51	52	30	31	32	40	41	42	50	51	52
31	32	33	41	42	43	51	52	53	52	53	31	32	33	41	42	43	51	52	53
32	33	34	42	43	44	52	53	54	53	54	32	33	34	42	43	44	52	53	54
33	34	35	43	44	45	53	54	55	54	55	33	34	35	43	44	45	53	54	55

Im2col 🗙

ETH zürich

 $y[m,i,j] = \Sigma(w[m,0:C,0:S,0:R] * x[0:C,i:i+S,j:j+R])$ 21
22

Lorenzo Lamberti

Linearized w

...

Considering M > 1 (M = N° output channels)

ALMA MATER STUDIORUM

00	01	02	10	11	12	20	21	22	21	22	00	01	02	10	11	12	20	21	22
01	02	03	11	12	13	21	22	23	22	23	01	02	03	11	12	13	21	22	23
02	03	04	12	13	14	22	23	24	23	24	02	03	04	12	13	14	22	23	24
03	04	05	13	14	15	23	24	25	24	25	03	04	05	13	14	15	23	24	25
10	11	12	20	21	22	30	31	32	31	32	10	11	12	20	21	22	30	31	32
11	12	13	21	22	23	31	32	33	32	33	11	12	13	21	22	23	31	32	33
12	13	14	22	23	24	32	33	34	33	34	12	13	14	22	23	24	32	33	34
13	14	15	23	24	25	33	34	35	34	35	13	14	15	23	24	25	33	34	35
20	21	22	30	31	32	40	41	42	 41	42	20	21	22	30	31	32	40	41	42
21	22	23	31	32	33	41	42	43	42	43	21	22	23	31	32	33	41	42	43
22	23	24	32	33	34	42	43	44	43	44	22	23	24	32	33	34	42	43	44
23	24	25	33	34	35	43	44	45	44	45	23	24	25	33	34	35	43	44	45
30	31	32	40	41	42	50	51	52	51	52	30	31	32	40	41	42	50	51	52
31	32	33	41	42	43	51	52	53	52	53	31	32	33	41	42	43	51	52	53
32	33	34	42	43	44	52	53	54	53	54	32	33	34	42	43	44	52	53	54
33	34	35	43	44	45	53	54	55	54	55	33	34	35	43	44	45	53	54	55

Im2col 🗙

ETH zürich

 $y[m,i,j] = \Sigma(w[m,0:C,0:S,0:R] * x[0:C,i:i+S,j:j+R])$ Matrixw

Standard convolution loop nest, HWC layout for activations, CoHWCi for weights.

 $y[m,i,j] = \Sigma(w[m,0:C,0:S,0:R] * x[0:C,i:i+S,j:j+R])$

Target int8 execution of kernels: CONV, FC, etc.

We want 1) maximize data reuse in register file 2) improve kernel regularity 3) exploit parallelism.

Target int8 execution of kernels: CONV, FC, etc.

ETH zürich

We want 1) maximize data reuse in register file 2) improve kernel regularity 3) exploit parallelism.

Target int8 execution of kernels: CONV, FC, etc.

We want 1) maximize data reuse in register file 2) improve kernel regularity 3) exploit parallelism.

lp.setup w0, 4(W0!) p.lw w1, 4(W1!) p.lw w2, 4(W2!) p.lw w3, 4(W3!) p.lw p.lw x1, 4(X0!)p.lw x2, 4(X1!) pv.sdotsp.b acc1, w0, x0 pv.sdotsp.b acc2, w0, x1 pv.sdotsp.b acc3, w1, x0 pv.sdotsp.b acc4, w1, x1 pv.sdotsp.b acc5, w2, x0pv.sdotsp.b acc6, w2, x1 pv.sdotsp.b acc7, w3, x0 pv.sdotsp.b acc8, w3, x1 end

ETH zürich

Target int8 execution of kernels: CONV, FC, etc.

We want 1) maximize data reuse in register file 2) improve kernel regularity 3) exploit parallelism.

Target int8 execution of kernels: CONV, FC, etc.

ETH zürich

We want 1) maximize data reuse in register file 2) improve kernel regularity 3) exploit parallelism.

Key idea: distribute cols/rows across processors

8-bit Convolution Results

How to enable extreme edge computing?

Lorenzo Lamberti

What is Quantization?

Converting data from a higher-precision format to a lower-precision format:

Real numbers are approximated to the closest tick Less bits = less ticks = less precision

Pro & cons of Quantization:

ETH zürich

lower-precision integers (e.g., int8)

PRO: Decreases memory footprint → Weights occupy less bits
PRO Increases computational efficiency Need to process less bits/MAC + use SIMD
Cons: Accuracy drop ? Not always!
How to reduce precision?
smaller float formats (e.g., float16)

Support for quantization in SoA GPUs (NVIDIA)

	Input C	perands	Accum	ulator	TOPS
[FP32	000000000000000000000000000000000000000	FP32	0000000(0000000000000000000000000000000	15.7
	FP16		FP32		125
F	FP32		FP32		19.5
	TF32		FP32		156
	FP16		FP32	000000000000000000000000000000000000000	312
100 -	BF16	000000000000000000000000000000000000000	FP32		312
	INT8		INT32	011111111111111111111111111111111111111	624
	INT4		INT32		1248
	BINARY	0	INT32	011111111111111111111111111111111111111	4992
	FP64		FP64		19.5
ľ	fwe	decrese pred	isio	$n \rightarrow TOPS$	improv

V

Representing real numbers: floating-point vs fixed-point

Representing real numbers: floating-point vs fixed-point

Floating-point representation:

- non-uniform sampling of the REAL number axis
- e controls range s controls precision • $r \sim s \times b^e \in \mathbb{R}$ $(s, b, e \in \mathbb{Z}) \rightarrow s, b, e \text{ are represented <u>explicitly</u> (you need bits)$

Representing real numbers: floating-point vs fixed-point

Fixed-point representation:

- uniform sampling of the real numbers
- $r \sim i \times 2^q \in \mathbb{R}$ $(i, q \in \mathbb{Z}) \rightarrow q$ is implicitly known by the application $\rightarrow i$ is an INT!

For *fixed-point*, you need only **integer** data and operations

 $r_1 \times r_2 = \mathbf{i_1} \times 2^{q_1} \times \mathbf{i_2} \times 2^{q_2} = \mathbf{i_1} \times \mathbf{i_2} \times 2^{q_1+q_2}$ exponents are <u>implicit</u> \rightarrow no need to spend explicit bit

Quantization on convolutions: float $32 \rightarrow$ int8

Convolution Neuron

$$y = \sum x \cdot w + b$$

x: activation input tensor
w: weight parameter tensor
b: bias parameter tensor
y: activation output tensor

Quantization on convolutions: float32 \rightarrow int8

Convolution Neuron

 $y = \sum x \cdot w + b$

x: activation input tensor
w: weight parameter tensor
b: bias parameter tensor
y: activation output tensor

DL frameworks operates with real numbers

- Floating-point 32-bit format (FP32)
- Inference requires FPU engines

Quantization on convolutions: float $32 \rightarrow$ int8

Convolution Neuron

 $y = \sum x \cdot w + b$

x: activation input tensor
w: weight parameter tensor
b: bias parameter tensor
y: activation output tensor

Quantization maps inputs/weights/output values into a set of integer values

- **Compression: 4x** (with 8-bit quantization)
- Speedup: 4x (with 8-bit convolution -- even more due to the lower bandwidth)

How to quantize: float32 \rightarrow int8

Any real tensor value is **mapped into the 8-bit** domain (INT8) through an **affine transformation**:

Convolution Operation

ETH zürich

X is a quantized value, x is a real value

How to get S and Z for each layer of the network?

- weights: easy, they are static \rightarrow you calculate S and Z after training
- Intermediate feature maps: they change at runtime. You can collect statistics on the training image set.

Jacob et al., "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference" Lorenzo Lamberti

Example: int8 integer quantization for inference

How to enable extreme edge computing?

Lorenzo Lamberti

What is deployment?

ETH zürich

L2 input = L2 image; memId O = 0;memId W = 0;L2 output[0] = (short int *) meta alloc(memId 0, outputSizesB[0]); ort int *) meta alloc(memId W, L3 sizes[0]); s[0], L2 weights, L3 sizes[0]); S2_Max2x2_S2_H_1(L2_input, L2_weights, L2_output[0], Norm_Factor[0], L2_bias[0], L3 sizes[0]);

L2 output[1] = (short int *) meta alloc(memId 0, outputSizesB[1]); L2_output[2] = (short int *) meta_alloc(memId_0, outputSizesB[2]); MedParConv_3x3_S2_ReLU_2(L2_input, L2_weights, L2_output[2], Norm_Factor[1], L2_bias[1], 0);

= (short int *) meta_alloc(memId_0, outputSizesB[3]);

(short int *) meta_alloc(memId_W, L3_sizes[2]);

3x3_S1_3(L2_input, L2_weights, L2_output[3], Norm_Factor[2], L2_bias[2], 0);

emId_W, L3_sizes[2]);

meta free(1, outputSizesB[2]);

Lorenzo Lamberti

1. Memory management

We do not use data CACHE, the reasons are:

- Silicon Area
- Energy Efficiency
- NN/DSP algo have predictable data traffic.

We generate C code for all data movement at compile time. **Static allocation is better than dynamic allocation**: less fragmentation, and les impact on runtime!

ETH zürich

1. Memory management

We do not use data CACHE, the reasons are:

- Silicon Area
- Energy Efficiency
- NN/DSP algo have predictable data traffic

We generate C code for all data movement at compile time. **Static allocation is better than dynamic allocation**: less fragmentation, and les impact on runtime!

1. Memory management

We do not use data CACHE, the reasons are:

- Silicon Area
- Energy Efficiency
- NN/DSP algo have predictable data traffic

We generate C code for all data movement at compile time. **Static allocation is better than dynamic allocation**: less fragmentation, and les impact on runtime!

Tiling: dividing tensors into smaller ones, called tiles

ETH zürich

How to solve both tiling and memory allocation?

Core Idea: solve Integer Linear Programming (ILP) problem for joint tiling & allocation solution!

Encodes the order/connections of the nodes

How to solve both tiling and memory allocation?

ALMA MATER STUDIOR

ETH zürich

Core Idea: solve Integer Linear Programming (ILP) problem for joint tiling & allocation solution!

An example of the Importance of Memory Allocation

Not optimized

An example of the Importance of Memory Allocation

Optimized

2. Static Topology Optimizations

Minimize number of nodes/edges:

- Remove useless reshapes/transpose nodes by moving them accross the graph
- Layer Fusion: known sequence of nodes/operations merged together thanks to specialized hand-written backend SW for minimizing data movement across the memory hierarchy.

Example: single convolution layer

Computation dataflow Ahead of time Store data (parameters & input vector) in L2 (or L3) At run time, for any computational node: 1. Partition of data (parameters & input tensors) & and Load to L1 2. Run computation 3. Store data (output tensors) back in L2 (or L3) static void Conv_Layer0 (signed char * In, // input L2 vector signed char * Weights, // input L2 vector signed char * Bias, // input L2 vector

signed char * **Out**, // output L2 vector

) {

//tile sizes of In, Weights, Bias computed offline
//L1 buffer allocated to handle double buffering
// two L1 memory buffers for double buffering

DMA load first tiles to L1 memory buffer

for any **tile** of In, Weights, Bias tensors:

DMA load next tiles to L1 memory buffer

ParConv() on L1 tile
ParReLU() on L1 tile
ParPool() on L1 tile

DMA write results (Out) to L2

ETH zürich

Mapping a NN to the PULP architecture

How to enable extreme edge computing?

So far, we saw 1--4. But can we automate all of this?

Lorenzo Lamberti

Deploying AI Applications to PULP

A complete and automated vertical software stack Specifications and dataset selection Training Quantization Library Cuantization Cuanti

[1] SPALLANZANI, Matteo; LEONARDI, Gian Paolo; BENINI, Luca. Training quantised neural networks with ste variants: the additive noise an nealing algorithm. CVPR. 2022. p. 470-479.
 [2] M. Scherer *et al.*, "Deeploy: Enabling Energy-Efficient Deployment of Small Language Models On Heterogeneous Microcontrollers", ArXiv, 2024.
 [3] Garofalo, Angelo, et al. "PULP-NN: Accelerating quantized neural networks on parallel ultra-low-power RISC-V processors." Philosophical Transactions of the Royal Society A 378.2164 (2020): 20190155.

Deploying AI Applications to PULP

A complete and automated vertical software stack

[1] SPALLANZANI, Matteo; LEONARDI, Gian Paolo; BENINI, Luca. Training quantised neural networks with ste variants: the additive noise annealing algorithm. CVPR. 2022. p. 470-479.

[2] M. Scherer et al., "Deeploy: Enabling Energy-Efficient Deployment of Small Language Models On Heterogeneous Microcontrollers", ArXiv, 2024. [3] Garofalo, Angelo, et al. "PULP-NN: Accelerating quantized neural networks on parallel ultra-low-power RISC-V processors." Philosophical Transactions of the Royal Society A 378.2164 (2020): 20190155.

Deploying AI Applications to PULP

ETH zürich

A complete and automated vertical software stack

[1] SPALLANZANI, Matteo; LEONARDI, Gian Paolo; BENINI, Luca. Training quantised neural networks with ste variants: the additive noise an nealing algorithm. CVPR. 2022. p. 470-479.

ALMA MATER STUDIORUM Università di Bologna [2] M. Scherer et al., "Deeploy: Enabling Energy-Efficient Deployment of Small Language Models On Heterogeneous Microcontrollers", ArXiv, 2024.

[3] Garofalo, Angelo, et al. "PULP-NN: Accelerating quantized neural networks on parallel ultra-low-power RISC-V processors." Philosophical Transactions of the Royal Society A 378.2164 (2020): 20190155.

How to enable extreme edge computing?

Lorenzo Lamberti

How to enable (multiple?) AI tasks on nano-UAVs?

How to enable (multiple?) AI tasks on nano-UAVs?

Minimize AI workload to fit multiple CNNs

Perception Accuracy Chapter 2 target Chapter SoA **START** Cost (mem/compute) **Functionalities**

Minimize AI workload to fit multiple CNNs

Enable Al multi-tasking on nano-UAVs

Background: the target platform

Background: the target platform

ETH zürich

One single AI task running fully onboard a nano-UAV: PULP-Dronet

Input image

A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scaramuzza, Luca Benini

ALMA MATER STUDIORUM Università di Bologna

One single AI task running fully onboard a nano-UAV: PULP-Dronet

PULP-Dronet CNN [1] Input image 🛞 Dropout ۲ Batch Normalization Generation Fully A 25×25×32 13×13×64 13×13×64 7×7×128 7×7×128 25×25×32 Steering angle by-pass Collision input image 200x200x1 **RES BLOCK 1 RES BLOCK 2 RES BLOCK 3 Probability** 0% 100%

How to optimize and improve the baseline SoA?

ETH zürich

	PULP-Dronet v1 [1]	PULP-Dronet v2 [2] (ours)
Deployment	Partially hand crafted	Automated
Quantization		
Model size		
Performance		

Automated deployment on MCUs = faster R&D

10 3

One single AI task running fully onboard a nano-UAV: PULP-Dronet

PULP-Dronet CNN [1] Input image 🛞 Dropout ۲ Batch Normalization Generation Fully A 25×25×32 13×13×64 13×13×64 7×7×128 7x7×128 25×25×32 Steering angle by-pass Collision input image 200x200x1 **RES BLOCK 1 RES BLOCK 2 RES BLOCK 3** Probability 0%

How to optimize and improve the baseline SoA?

	PULP-Dronet v1 [1]	PULP-Dronet v2 [2] (ours)	
Deployment	Partially hand crafted	Automated	
Quantization	16-bit	8-bit	
Model size			
Performance			

Automated deployment on MCUs = faster R&D				
Quantization:	16-bit → 8-bit			

1] Palossi *et al.*, "A 64-mW DNN-based visual navigation engine for autonomous nano-drones," Internet of Things Journal, 2019. Internet of Things Journal, 2019. [2] V. Niculescu *et al.*, "Improving Autonomous Nano-Diffee Performantic via Automated End-to-End Optimization and Deployment of DNNs," JETCAS, 2021. 100%

One single AI task running fully onboard a nano-UAV: PULP-Dronet

Input image

How to optimize and improve the baseline SoA ?

	PULP-Dronet v1 [1]	PULP-Dronet v2 [2] (ours)		
Deployment	Partially hand crafted	Automated		
Quantization	16-bit	8-bit		
Model size	640kB	320kB		
Performance	6 fps @ 45 mW 12 fps @ 123 mW	10 fps @ 35 mW 19 fps @ 102 mW		

Automated deployment on MCUs = faster R&D						
Quantization: 16-bit → 8-bit						
Memory footprint: 640kB → 320kB						
Higher energy efficiency						

 ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA
 [1] Palossi *et al.*, "A 64-mW DNN-based visual navigation engine for autonomous nano-drones," Internet of Things Journal, 2019.
 [2] V. Niculescu *et al.*, "Improving Autonomous Nano-DHONES?Performation and Deployment of DNNs," JETCAS, 2021.

Quantization

Training			Testing		
CNN	Size	Data type	RMSE	Accuracy	
SoA Baseline	640kB	Fixed 16-bit	0.110	0.891	SoA
PULP-Dronet v2		Fixed 8-bit			Ours

RMSE = *Root mean squared error*

Results Halved data type precision: 16bit \rightarrow 8bit

github.com/pulp-platform/quantlib

Quantization

Training			Testing		
CNN	Size	Data type	RMSE	Accuracy	
SoA Baseline	640kB	Fixed 16-bit	0.110	0.891	SoA
PULP-Dronet v2	320kB	Fixed 8-bit			Ours

RMSE = *Root mean squared error*

ResultsHalved data type precision: 16bit \rightarrow 8bit

• 2x less memory

github.com/pulp-platform/quantlib

Quantization

Training			Testing		
CNN	Size	Data type	RMSE	Accuracy	
SoA Baseline	640kB	Fixed 16-bit	0.110	0.891	SoA
PULP-Dronet v2	320kB	Fixed 8-bit	0.120	0.900	Ours

RMSE = *Root mean squared error*

Results Halved data type precision: 16bit \rightarrow 8bit

- 2x less memory
- Negligible Accuracy/RMSE variation

github.com/pulp-platform/quantlib

Quantization

Tra	Testing RMSE Accuracy			
CNN Size Data type			RMSE	Accuracy
SoA Baseline	640kB	Fixed 16-bit	0.110	0.891
PULP-Dronet v2	320kB	Fixed 8-bit	0.120	0.900

RMSE = Root mean squared error

Results Halved data type precision: 16bit \rightarrow 8bit

- 2x less memory
- Negligible Accuracy/RMSE variation

github.com/pulp-platform/quantlib

github.com/pulp-platform/deeploy

On-board performance

SoC config: FC@250MHz, CL@175MHz, Vdd = 1.2

CNN	Frame/s	Power	Energy per frame
SoA Baseline	11.5	123 mW	10.5 mJ
PULP-Dronet v2	19	102 mW	4 mJ

Running on GAP8

Quantization

Tra	Tes	sting		
CNN	RMSE	Accuracy		
SoA Baseline	640kB	Fixed 16-bit	0.110	0.891
PULP-Dronet v2	320kB	Fixed 8-bit	0.120	0.900

RMSE = Root mean squared error

Results Halved data type precision: 16bit \rightarrow 8bit

- 2x less memory
- Negligible Accuracy/RMSE variation

github.com/pulp-platform/quantlib

github.com/pulp-platform/deeploy

On-board performance

SoC config: FC@250MHz, CL@175MHz, Vdd = 1.2 CNN Frame/s Power **Energy per frame** SoA Baseline 123 mW 10.5 mJ 11.5 PULP-Dronet v2 19 102 mW 4 mJ Running on GAP8 1.6X 1.6X energy efficient throughput 10 11 4 56 7 89 **NEMO/DORY** Energy efficient configuration CL 1 Conv5x5 $P_{avg} \cong 35 \text{ mw}$ 2 Maxpool2x2 FC 40 20 20 3 Conv3x3+ReLu 4 Conv3x3+ReLu 5 Conv1x1+ReLu 6 Conv3x3+ReLu 7 Conv3x3+ReLu 8 Conv1x1+ReLu 9 Conv3x3+ReLu 10 Conv3x3+ReLu 11 Conv1x1+ReLu 20 80 100 40 60 Time (ms)

In-field testing PULP-Dronet v2

Alma mater studiorum Università di Bologna

ETH zürich

Corridor (110m)

Up to 1.92m/s

4x faster than the SoA baseline (0.5m/s)

Lorenzo Lamberti

Nanocopter Al Challenge @ IMAV'22

Challenge:

autonomous visual-based navigation in an unknown flight arena, with static/dynamic obstacles and gates.

MAVLab TUDelft Ditcraze

Nanocopter AI challenge - IMAV 2022 Delft, The Netherlands

Advance tiny drone technology by developing the AI for autonomous obstacle avoidance

CNN execution fully onboard at 30FPS

Training (simulator-only)

Competition (IMAV'22, Delft)

Full video recording: https://www.youtube.com/live/WaDU4I2TImA?t=838

Lorenzo Lamberti

ALCIER XXXXXX

Nanocopter AI Challenge @ IMAV'22 international competition

Contribution

Demonstrated a robust automated AI deployment pipeline for MCUs

Minimize AI workload to fit multiple CNNs

Enable Al multi-tasking on nano-UAVs

Minimize Al workload to fit multiple CNNs

How to enable AI multi-tasking on resource constrained MCUs?

PULP-Dronet v2 limitation: computational/memory cost is too high for efficient multitasking

How to enable AI multi-tasking on resource constrained MCUs?

PULP-Dronet v2 limitation: computational/memory cost is too high for efficient multitasking

How to enable AI multi-tasking on resource constrained MCUs?

PULP-Dronet v2 limitation: computational/memory cost is too high for efficient multitasking

How to enable AI multi-tasking on resource constrained MCUs?

PULP-Dronet v2 limitation: computational/memory cost is too high for efficient multitasking

We present a methodology [1,2] to reduce the <u>number of operations</u> and <u>memory footprint</u> of CNN's

[1] L. Lamberti *et al.*, "Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones," 2022 AICAS,
[2] L. Lamberti *et al.*, "Distilling Tiny and Ultrafast Deep Neural Networks for Autonomous Navigation on Nano-UAVs," 2024 IOTJ,

Legenda ightarrow for the formula formula for the formula for the formula f

The network can be shrinked !

Tiny-PULP-Dronet

Tiny-PULP-Dronet

1. By-pass removal

Tiny-PULP-Dronet

1. By-pass removal

2. Reduction of channels

Dividing factor

Tiny-PULP-Dronet

1. By-pass removal

2. Reduction of channels

Dividing factor

Tiny-PULP-Dronet						
1. By-pass removal	2. Reduction	of channels	3	8. Spa	rsity	
Main branch	* 27	Dividing factor $\gamma = 1$ $\gamma = \frac{1}{2}$	BLOCK#	1	2	3
'► By-pass		$\gamma = \frac{1}{4}$ $\gamma = \frac{1}{8}$	Sparsity (Baseline)	0%	0.7%	0%

320kB 41M MAC = multiply-accumulate operations

ALMA MATER STUDIORUM Università di Bologna

ETH zürich

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

ETH zürich

Lorenzo Lamberti

ALMA MATER STUDIORUM Università di Bologna

ETH zürich

Lorenzo Lamberti

On-boad performance

ALMA MATER STUDIORUM

ETH zürich

In field tests

In field tests

ETHZÜRICH

Lorenzo Lamberti

PULP-Dronet v3 (Ours)

CNN size: 320kB

Target speed: 1.5m/s

Tiny-PULP-Dronet v3 (Ours)

CNN size: 6.4kB

Target speed: 0.5m/s

We presented <u>a methodology for squeezing CNNs</u> [1,2].

We minimized the AI workload We can exploit the device resources for additional AI tasks !

[1] L. Lamberti *et al.*, "Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones," 2022 AICAS, [2] L. Lamberti *et al.*, "Distilling Tiny and Ultrafast Deep Neural Networks for Autonomous Navigation on Nano-UAVs," 2024 IOTJ, Optimize single-task visual-based navigation

Minimize AI workload to fit multiple CNNs

Enable Al multi-tasking on nano-UAVs

Enable Al multi-tasking on nano-UAVs

Deploying an additional task on the nano-UAV

Tiny-PULP-Dronet				
0:		Frar	ne/s	
Size		GAP8	GAP9	
6.4kB	1.5M	160	424	

ETH zürich

Object detection task

[1] Huang J et al. "Speed/accuracy trade-offs for modern convolutional object detectors." In Proceedings of the IEEE CVPR, pp. 7310-7311. 2017. ALMA MATER STUDIORUM **ETH** zürich

Lorenzo Lamberti

CNNs evaluation

Tested: 3 CNN channel depth multipliers: 1x , 0.75x , 0.5x **Setup:** Tested on the "Himax dataset" we collected

CNN throughput/accuracy tradeoffs:

CNN size	Size [MB]	MAC	mAP	Throughput [FPS]
1x	4.7	534M		
0.75x	2.7	358M		
0.5x	1.2	193M		

mAP = mean Average Precision

Himax dataset

CNNs evaluation

Tested: 3 CNN channel depth multipliers: 1x , 0.75x , 0.5x **Setup:** Tested on the "Himax dataset" we collected

CNN throughput/accuracy tradeoffs:

CNN size	Size [MB]	MAC	mAP	Throughput [FPS]	
1x	4.7	534M	50%	1.6	\rightarrow most accurate & slowest
0.75x	2.7	358M	48%	2.3	
0.5x	1.2	193M	32%	4.3	\rightarrow least accurate & fastest

mAP = mean Average Precision

Himax dataset

ETH zürich

CNNs evaluation

Tested: 3 CNN channel depth multipliers: 1x , 0.75x , 0.5x **Setup:** Tested on the "Himax dataset" we collected

CNN throughput/accuracy tradeoffs:

P D P

Himax dataset

Contribution 3

Two CNNs running fully onboard [1]:

Bio-inspired Autonomous Exploration Policies with CNN-based Object Detection on Nano-drones

Lorenzo Lamberti, Luca Bompani, Victor Javier Kartsch, Manuele Rusci, Daniele Palossi, Luca Benini

We enabled AI multi-tasking on a nano-sized UAV

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA [1] M. Pourjabar *et al.*, "Multi-sensory Anti-collision Design for Autonomous Nano-swarm Exploration," 2023 ICECS. Lorenzo Lamberti

Conclusion

Initail question: how can we enable AI at the extreme edge?

- 1. Conv as MatMul
- 2. SIMD operations
- 3. Parallelism
- 4. PULP-NN kernels
- 1. CNN quantization 2. Int8 vs. float32
- 1. The tiling problem 2. Static memory allocation 3. Topology optimization

deployment

Tiny neural networks

1. Automated deployment 2. CNN Shrinking methodology

Conclusion

Proven in-field in a drone race

	i		
-		1	-

Tiny-PULP-Dronet					
Size	MAC	Frame/s			
6.4kB	1.5M	424			

Visual-based navigation
Object detection

Q&A

Thank you!

github.com/pulp-platform/pulp-dronet

https://github.com/pulp-platform

http://pulp-platform.org https://www.youtube.com/c/PULPPlatform @pulp_platform