
||Integrated Systems Laboratory, ETH Zurich

Fabian Schuiki1, Michael Schaffner1, Luca Benini1,2

ETH Zurich1 and University of Bologna2

NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious
Floating-Point Algorithms in 22nm FD-SOI

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 1

||Integrated Systems Laboratory, ETH Zurich

Introduction: The Specialization Challenge

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 2

[1] “Zion: Facebook Next-Generation Large Memory Training Platform”, Facebook, HotChips 2019
[2] “DaVinci: A Scalable Architecture for Neural Network Computing”, Huawei, HotChips 2019

[3] “Deep Learning Training at Scale”, Intel, HotChips 2019
[4] “Wafer-Scale Deep Learning”, Cerebras Systems, HotChips 2019

[5] Habana Labs, HotChips 2019

§ Key challenge: Training algorithms change
§ Rise of sparsity in DNNs
§ Rise of novel number formats (e.g. bfloat)

§ Avoid overspecialization!
§ GPUs are successful because the remain

flexible (general purpose):
§ Reduction of von Neumann bottleneck thanks

to SIMT
§ Memory latency tolerance thanks to heavy

multithreading

§ Recent surge of Machine Learning cloud
workloads:
§ 3x growth of ML compute workload in 12 months

at Facebook [1]
§ Huawei DaVinci Max cloud training platform [2]
§ Compute spent on training doubles every 3.5

months (Intel Nervana NNP-T) [3]
§ Wafer-Scale Deep Learning at Cerebras [4]
§ Gaudi AI training processor by Habana Labs [5]

||Integrated Systems Laboratory, ETH Zurich

Introduction: Target Workload

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 3

§ Key points for designing new systems:

§ Maintain flexibility (fast moving algorithms)
§ Extreme energy efficiency

§ Our approach: design an architecture for a
large class of problems!

§ Data-Oblivious Programs
§ Control flow does not depend on data
§ Large number of algorithms fall into this category
§ Prominently includes DNN training

§ Enter the Network Training Accelerator

Data-Oblivious Program Examples:
ü Reductions and Scans
ü Stencils
ü Linear Algebra

ü Matrix Multiplication
ü Tridiagonal Solve
ü Cholesky Factorization
ü LU decomposition (almost oblivious)

ü Deep Learning (Convolution, ReLU)

ü FFT
ü Graph Algorithms

ü Breadth-first Search
ü Single-source Shortest Path
ü Connected Components

ü Sorting Networks
ü Bitonic Sort

||Integrated Systems Laboratory, ETH Zurich

Introduction: NTX at a Glance

§ “Network Training Accelerator”
§ 32 bit float streaming co-processor (IEEE 754 compatible)
§ Custom 300 bit “wide-inside” Fused Multiply-Accumulate
§ 1.7x lower RMSE than conventional FPU

§ Manufactured in Globalfoundries 22FDX
§ 1 RISC-V core (”RI5CY”) and DMA
§ 8 NTX co-processors
§ 64 kB L1 scratchpad memory (comparable to 48 kB in V100)

§ 0.5 mm2, 1.25 GHz worst-case, 166 mW, 0.8 V

Key ideas to increase hardware efficiency:
§ Reduction of von Neumann bottleneck (load/store elision

through streaming)
§ Latency hiding through DMA-based double-buffering

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 4

||Integrated Systems Laboratory, ETH Zurich

§ Main data path is a single-cycle partial
carry save FMA

§ Expansion of float operands to fixed-point
§ Multiplication and addition in fixed-point

§ Single-cycle
§ Tuneable performance by increasing number of

partial sums
§ Conversion to float after accumulation

§ Partial sums are accumulated
§ Conversion from fixed-point to float

§ Heavily pipelined

NTX

Architecture: FMAC

a

b
c

z

32 bit float

≈300 bit fixed-point
32 bit float

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 5

||Integrated Systems Laboratory, ETH Zurich

§ FMA operands arrive as memory streams
§ Maskable to 0/1 to disable add/mul

§ Optional ReLU on FMA result
§ Comparator for finding max/min
§ Index counter for finding argmax/argmin

§ Enables maxpool derivatives
§ Output can be masked to 0/1

§ Enables ReLU derivatives
§ Fire-and-forget datapath

§ Command pushed into FIFO
§ Consumes fixed number of input items
§ Produces fixed number of output items

Architecture: Data Path NTX

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 6

||Integrated Systems Laboratory, ETH Zurich

NTX

Architecture: Address Generation

Used as read addresses Used as write address§ 5 nested hardware loop counters
§ 16 bit counter register
§ Configurable number of iterations
§ Once last iteration reached:

§ Reset counter to 0
§ Enable next counter for one cycle

§ 3 address generation units
§ 32 bit address register
§ Each has 5 configurable strides, one per loop
§ One stride added to register per cycle
§ Stride corresponds to the highest enabled loop

§ Allows for complex address patterns

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 7

||Integrated Systems Laboratory, ETH Zurich

NTX

Architecture: Coprocessor
§ Processor configures operation via memory-mapped registers
§ Controller issues AGU, HWL, and FPU micro-commands based on configuration
§ Reads/writes data via 2 memory ports (2 operand and 1 writeback streams)
§ FIFOs help buffer data path and memory latencies

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 8

||Integrated Systems Laboratory, ETH Zurich

NTX NTXNTXNTX

NTX 16 (small)
m=16 clusters
n=1 cores per cluster
k=8 NTXs per cluster
NTX @ 1.5 GHz

NTX 64 (big)
m=64 clusters
n=1 cores per cluster
k=8 NTXs per cluster
NTX @ 1.5 GHz

Architecture: Processing Cluster
§ 1 processor core controls 8 NTX coprocessors
§ Attached to 128 kB shared TCDM via a logarithmic interconnect
§ DMA engine used to transfer data (double buffering)
§ Multiple clusters connected via interconnect (crossbar/NoC)

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 9

||Integrated Systems Laboratory, ETH Zurich Fabian Schuiki, Michael Schaffner, Luca Benini

Programming: Von Neumann Bottleneck

§ NTX helps alleviate the von Neumann bottleneck
§ No explicit load/store instructions
§ No explicit address calculation instructions

§ Simple example: Dot product over 1024 elements
§ With single RV32IF:

§ 6146 instructions executed
§ With single NTX (plus RV32I):

§ 10 instructions executed
§ 1024 idle cycles while NTX executes (can be used)

§ NTX reduces instruction bandwidth by >500x
§ Even more when using more nested loops

§ NTX amortizes single instruction stream over 8 FPUs
§ Data/Inst. bandwidth ratio of 16 (worst case, usually higher)

li t0, 1024
flw ft0, 0(a0)
flw ft1, 0(a1)
fmadd ft2, ft0, ft1, ft2
addi t0, t0, -1
addi a0, a0, 4
addi a1, a1, 4
bgtz t0, -6
fsw ft2, 0(a2)

Single RV32IF Core:
Setup

Writeback

Hot Loop

Setup

Idle

sw a0, NTX_AGU0_PTR
sw a1, NTX_AGU1_PTR
sw a2, NTX_AGU2_PTR
li t1, 1024
sw t1, NTX_BOUND_L0
li t1, 4
sw t1, NTX_AGU0_S0
sw t1, NTX_AGU1_S0
li t1, NTX_MAC_CMD
sw t1, NTX_CMD
wfi

Single NTX:

Oct 2019 10

||Integrated Systems Laboratory, ETH Zurich

Performance: Memory Accesses

§ Compared to NVIDIA Volta GPU [1]:

§ Register file in GPU holds registers and thread-
local data

§ Each register read/write is an SRAM access

§ Register and data accesses compete for SRAM

§ Our latency hiding technique is not more
expensive than in GPUs

[1] Volta Architecture Whitepaper, NVIDIA

FMAC accu, [AGU0], [AGU1]
LDS R2, [R0]
LDS R3, [R1]
FFMA R4, R2, R3, R2

Volta Assembly NTX Pseudocode

2 mem. acc. (“[…]”)
8 reg. acc.

2 mem. acc. (“[…]”)
0 reg. acc.
(+ addr. calc for free)

= 10 SRAM hits total = 2 SRAM hits total

1 Volta SM 8 NTX cl.
64 FPUs 64 FPUs

256 kB RF
128 kB L0 Cache

512 kB TCDM

32-2048 threads 8 threads

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 11

||Integrated Systems Laboratory, ETH Zurich

C++ API Example

for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
load_tile(x, w, b);
for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {
float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {
a += x[d][n+u][m+v] * w[k][d][u][v];

}
y[k][n][m] = a;

}
store_tile(y);

}

Tiled convolution:

ntx_api ntx;
dma_api dma;
ntx.cfg_loops(5, {N,M,D,U,V}, ...);
for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
dma.start_read(x, w, b);
for (int k = 0; k < K; ++k) {
ntx.cfg_ptrs(x, &w[k], &y[k]);
dma.wait_read();
ntx.issue_cmd(ntx_api::MAC);

}
ntx.wait_ready();
dma.start_write(y);
swap_buffers();

}

Tiled convolution with NTX:

Configure loop bounds
once for the entire
kernel

Start reading input data

Point NTX at the
address of the input
data

Wait for the input data
to be loaded (overlaps
with previous NTX
computation)

Start next computation

Wait for computation to complete

Start writing back output data

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 12

||Integrated Systems Laboratory, ETH Zurich

Results: Roofline

§ Alleviates von Neumann bottleneck:
§ No explicit loads, stores, address

calculation
§ DMA transfers data in background
§ NTX independent over >100000 cycles
§ Strong >85% utilization of DMA and FPU
§ Effectively issues 32 flops, 20 mem. acc.

per cycle (16 local & 4 global, 32 bit)
§ Covers wide range of oblivious kernels:

§ Linear Algebra: e.g AXPY, GEMV, GEMM
§ Stencils: e.g. Diffusion, Discrete Laplace in

1D/2D/3D
§ Machine Learning: e.g. Convolution,

ReLU, FC

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 13

Very close to roofline on compute-
bound kernels (>85%)

Also very close to roofline on
memory-bound kernels (>85%)

Only little detachment from roofline
even for very small kernels.

Core very relaxed; <2% for
most kernels (except tiny ones)

||Integrated Systems Laboratory, ETH Zurich

Results: Manufactured Chip in 22FDX

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 14

NTX NTX

see asic.ethz.ch

||Integrated Systems Laboratory, ETH Zurich

Results: Silicon Measurements

§ Key benefit: >30% of area is FPU
§ Yields high area efficiency:

§ 47 Gflop/s·mm2

§ High efficiency mode at 0.425 V:
§ 260 Gflop/sW, 1.5 Gflop/s

§ High performance mode at 1.0V:
§ 24 Gflop/s, 70 Gflop/sW

§ Wide range of operating voltage:
§ Logic: 0.425 V to 1.0 V and above
§ SRAMs: 0.55 V to 1.0V and above

§ Dynamically set operating point for workload
§ Almost linear trade-off between perf./efficiency
§ Compensate for PVT variation via body-bias
§ Performance boost up to 1.6x

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 15

Performance and efficiency measured on manufactured silicon:

Area and power consumption breakdown of manufactured silicon:

||Integrated Systems Laboratory, ETH Zurich Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 16

Results: Comparison with Other Work
47.1

20.5
14.5

8.7 7.35
3.57

0

10

20

30

40

50

[G
flo

p/
s

m
m

2]

Area Efficiency

NTX Tesla V100 Rocket 64b Cortex A53 PULP Xeon 8180

260

122

16.7
38.7

18 21.9

0

50

100

150

200

250

300

[G
flo

p/
sW

]

Energy Efficiency

NTX Tesla V100 Rocket 64b Cortex A53 PULP Xeon 8180

§ NTX is highly competitive with SoA
§ Compared to equivalent SM in Volta

V100 (our estimates):
§ 2.1x energy efficiency gain
§ 2.3x area efficiency gain

(node-compensated)
§ Compared to PULP cluster, ARM Cortex

A53, and a 64 bit Rocket core:
§ 6.7x to 15.6x energy efficiency gain
§ 3.2x to 6.4x area efficiency gain

§ Compared to a 28-core dual-AVX-512 Intel
Xeon 8180 CPU:
§ 11.9x energy efficiency gain
§ 13.2x area efficiency gain

||Integrated Systems Laboratory, ETH Zurich

Future Work
§ Address Generator Extension

§ NTX’s address generator applicable to more kernels
§ FFTs, linear algebra decompositions/factorizations
§ Searches? Sorting? Graphs?

§ Bring streaming to RISC-V cores
§ Transprecision Computing

§ Reduced-precision training is around the corner [1]
§ Save precious DRAM bandwidth
§ Custom number formats

§ Use float8, float16
§ Logarithmic numbers?

§ On-the-fly data type conversion in DMA

§ Automated Mapping of Kernels
§ Starting from Compute Graph, e.g. TensorFlow

[1] Coleman, Cody, et al. "Analysis of dawnbench, a time-to-accuracy machine learning performance
benchmark." ACM SIGOPS Operating Systems Review 53.1 (2019): 14-25.

Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 17

||Integrated Systems Laboratory, ETH Zurich Oct 2019Fabian Schuiki, Michael Schaffner, Luca Benini 18

Thanks!
—

Questions?

