Outline

1. Computational graphs & deep learning frameworks
 • Deep neural networks as computational graphs
 • Dynamic vs. static computational graphs

2. QuantLab & quantlib
 • The deep learning development stack
 • QNNs: a HW/SW co-design problem

3. Graph editing
 • Tree traversal and leaf replacement
 • Graph morphisms and algebraic graph rewriting
QuantLab Virtual Workshop

Part 1: computational graphs & deep learning frameworks
Graph terminology - basics

• Let $V \neq \emptyset$ be a set of nodes
Graph terminology - basics

- Let $V \neq \emptyset$ be a set of nodes
- **Graph**
 - $G = (V, E \subseteq V \times V)$
 - Elements $e \in E$ are called **arcs**
Graph terminology - basics

• Let $V \neq \emptyset$ be a set of nodes

• Graph
 • $G = (V, E \subseteq V \times V)$
 • Elements $e \in E$ are called arcs

• Undirected graph
 • $(u, v) \in E \Rightarrow (v, u) \in E$
 • Elements $e \in E$ are called edges
Graph terminology - basics

- Let $V \neq \emptyset$ be a set of nodes
- Graph
 - $G = (V, E \subseteq V \times V)$
 - Elements $e \in E$ are called arcs
- Undirected graph
 - $(u, v) \in E \Rightarrow (v, u) \in E$
 - Elements $e \in E$ are called edges
- Bipartite graph
 - $V = V_A \cup V_B \mid V_A, V_B \neq \emptyset, V_A \cap V_B = \emptyset$
 - $E \subseteq ((V_A \times V_B) \cup (V_B \times V_A))$
Supervised learning: the problem

• The task is approximating an (unknown) function

\[f^* : X \to Y \]

• How can we assess the quality of an approximation \(f \approx f^* \)?

 • Loss function:
 \[\ell : Y \times Y \to \mathbb{R}^+_0 \]

 • Loss functional:
 \[\mathcal{L}(f) := \int_{X \times Y} \ell(f(x), y) \, d\mu(x, y) \]
Supervised learning: the solution

• Machine learning system
 • **Hypothesis space**
 • $f : \Theta \times X \to Y$ (i.e., a collection $\{f_\theta : X \to Y \mid \theta \in \Theta\}$)
 • Rewrite $L(f) = L(\theta) = \int_{X \times Y} \ell(f(\theta, x), y) d\mu(x, y)$
 • **Data set**
 • $\mathcal{D} : X \times Y \to \mathbb{N}_0 \mid 0 < \sum_{(x,y) \in X \times Y} \mathcal{D}(x, y) = N < +\infty$
 • Approximate $\mu \approx \frac{1}{N} \sum_{(x,y) \in X \times Y} \mathcal{D}(x, y) \delta_{(x,y)}$
 • **Learning algorithm**
 • If L and f are differentiable, it can be gradient-based:
 $$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta_t) = \theta_t - \eta \left(\frac{1}{N} \sum_{(x,y) \in X \times Y} \mathcal{D}(x, y) \nabla_{\theta} \ell(f(\theta_t, x), y) \right)$$
Computational graphs

• Directed, bipartite graphs

• $V = V_M \cup V_K$
 • *Memory nodes* $v \in V_M$ represent operands
 • *Kernel nodes* $v \in V_K$ represent operations

• $E \subseteq ((V_M \times V_K) \cup (V_K \times V_M))$
 • Arcs $e \in E \cap (V_M \times V_K)$ represent *read/load* dependencies
 • Arcs $e \in E \cap (V_K \times V_M)$ represent *write/store* dependencies

• Each operand is the result of at most one operation:
 • $\forall v \in V_M, (u_1, v), (u_2, v) \in E \Rightarrow u_1 = u_2$
DNNs as computational graphs: an example

\[w_2 \varsigma(b_1 + w_1 x_0) \]
DNNs as computational graphs: an example

\[w_1 x_0 \]
DNNs as computational graphs: an example

\[b_1 + w_1 x_0 \]
DNNs as computational graphs: an example

\[\varsigma(b_1 + w_1 x_0) \]
DNNs as computational graphs: an example

\[w_2 \varsigma(b_1 + w_1 x_0) \]
Three ways of performing differentiation

- **Symbolic differentiation**
 - Based on the rules of differential calculus
 - Given a function $\mathcal{L}(\theta, z)$, *pre-compute* $\nabla_\theta \mathcal{L}|_{\theta, z}$ as a function of θ and z.
 - Cons:
 - Computing the differential **automatically** might be **impossible for complex functions**
 - Computing the differential **by hand** can be **time-consuming and is error-prone**
Three ways of performing differentiation

• Symbolic differentiation
 • Based on the rules of differential calculus
 • Given a function $\mathcal{L}(\theta, z)$, pre-compute $\nabla_\theta \mathcal{L}|_{\theta, z}$ as a function of θ and z.
 • Cons:
 • Computing the differential automatically might be impossible for complex functions
 • Computing the differential by hand can be time-consuming and is error-prone

• Numerical differentiation
 • Based on the definition of derivative
 • Given a function $\mathcal{L}(\theta, z)$, computing $\mathcal{L}(\theta + h, z) - \mathcal{L}(\theta, z)$ requires two evaluations.
 • Cons:
 • Computers have no notion of limit operation: numerical derivatives are usually approximations computed using small values for $\| h \|
 • Approximation errors are more likely when θ is multi-dimensional
Three ways of performing differentiation

• **Symbolic differentiation**
 • Based on the rules of differential calculus
 • Given a function $\mathcal{L}(\theta, z)$, **pre-compute** $\nabla_\theta \mathcal{L}|_{\theta, z}$ as a function of θ and z.
 • Cons:
 • Computing the differential **automatically** might be **impossible for complex functions**
 • Computing the differential **by hand** can be time-consuming and is error-prone

• **Numerical differentiation**
 • Based on the definition of derivative
 • Given a function $\mathcal{L}(\theta, z)$, computing $\mathcal{L}(\theta + h, z) - \mathcal{L}(\theta, z)$ requires two evaluations.
 • Cons:
 • Computers have no notion of limit operation: numerical derivatives are usually approximations computed using small values for $\| h \|$
 • Approximation errors are more likely when θ is multi-dimensional

• **Automatic differentiation**
Automatic differentiation

• Based on the chain rule
• Each operation computes the gradients with respect to its inputs
• Two modes
 • **Direct-mode**
 • Can be computed in parallel to the forward pass
 • Almost always requires recomputing tensor contractions
 • **Reverse-mode** (aka back-propagation)
 • Must wait the completion of the forward pass before beginning the gradient computation
 • Computes each product in the chain rule just once
Differentiable computational graphs

• Each operation \(v \in V_K \) is differentiable with respect to its operands \(u \in V_M \mid (u, v) \in E \)

• **Forward pass** (aka *inference pass*)

• **Backward pass**
 • This is gradient computation
 • Do not confuse it with gradient descent!

\[
\nabla_w \ell \quad \nabla_b \ell \quad \nabla_s \ell
\]
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- Static computational graph
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- Dynamic computational graph
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• **Static computational graph**
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• **Dynamic computational graph**
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time Depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation \((define-and-run)\)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow \((define-by-run)\)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (define-and-run)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (define-by-run)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

- **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

- **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• Static computational graph
 • Graph is fully defined before executing any operation (*define-and-run*)
 • Pro: the graph’s structure is clear and easy to manipulate
 • Cons: slower development cycle

• Dynamic computational graph
 • Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 • Pro: faster development cycle
 • Cons: the graph’s structure might be obscure and cumbersome to manipulate
Static vs. dynamic computational graphs

• **Static computational graph**
 - Graph is fully defined before executing any operation (*define-and-run*)
 - Pro: the graph’s structure is clear and easy to manipulate
 - Cons: slower development cycle

• **Dynamic computational graph**
 - Graph is defined at run-time depending on the script’s control flow (*define-by-run*)
 - Pro: faster development cycle
 - Cons: the graph’s structure might be obscure and cumbersome to manipulate
A thousand flavours of computational graphs

ONNX: the “assembly” of computational graphs
A thousand flavours of computational graphs

TensorFlow (v1.0 – might have changed)

• Operation “super-nodes” contain:
 • Memory nodes
 • Constants
 • Parameters
 • Hyper-parameters
 • Output features
 • Kernel nodes

• Edges can be associated to the output memory nodes contained in each “super-node”
 • “Nodes represent operations, edges represent data flowing between operations”
A thousand flavours of computational graphs

TensorFlow (v1.0 – might have changed)

• Operation “super-nodes” contain:
 • Memory nodes
 • Constants
 • Parameters
 • Hyper-parameters
 • Output features
 • Kernel nodes

• Edges can be associated to the output memory
 nodes contained in each “super-node”
 • “Nodes represent operations, edges represent data
 flowing between operations”
A thousand flavours of computational graphs

PyTorch (v1.9)
• Operation “super-nodes” contain:
 • Memory nodes
 • Constants
 • Parameters
 • Hyper-parameters
 • Kernel nodes; remember: they are instantiated only at runtime!
 • Defined **explicitly** in the constructor (**__init__**) method
• Edges can be associated to the memory nodes representing features
 • Remember: they are instantiated only at runtime!
 • Defined **implicitly** in the **forward** (**__call__**) method
A thousand flavours of computational graphs

PyTorch (v1.9)

• Operation “super-nodes” contain:
 • Memory nodes
 • Constants
 • Parameters
 • Hyper-parameters
 • Kernel nodes; remember: they are instantiated only at runtime!
 • Defined explicitly in the constructor (__init__) method

• Edges can be associated to the memory nodes representing features
 • Remember: they are instantiated only at runtime!
 • Defined implicitly in the forward (__call__) method
A thousand flavours of computational graphs

PyTorch (v1.9)

• Operation “super-nodes” contain:
 • Memory nodes
 • Constants
 • Parameters
 • Hyper-parameters
 • Kernel nodes; remember: they are instantiated only at runtime!
 • Defined explicitly in the constructor (__init__) method

• Edges can be associated to the memory nodes representing features
 • Remember: they are instantiated only at runtime!
 • Defined implicitly in the forward (__call__) method
A thousand flavours of computational graphs

NASBench201 data set

- Neural architecture search (NAS) is a deep-learning-specific variant of model selection

- NASBench201
 - Inputs: genotypes, i.e., structured description of network topologies
 - Outputs: accuracies

- Genotypes are described in terms of cells
 - Nodes represent feature arrays
 - Edges represent operations and their parameters
A thousand flavours of computational graphs

NASBench201 data set

• *Neural architecture search* (NAS) is a deep-learning-specific variant of *model selection*

• NASBench201
 • Inputs: *genotypes*, i.e., structured description of network topologies
 • Outputs: accuracies

• Genotypes are described in terms of cells
 • Nodes represent feature arrays
 • Edges represent operations and their parameters
QuantLab Virtual Workshop

Part 2: QuantLab & quantlib
The deep learning development stack

Platform-agnostic
- **Data analysis**: how can we model the data problem?
- **DNN design**: which network topology can work best?
- **Training**: backpropagation + SGD

Platform-specific
- **Graph optimisation**: ONNX graph (e.g., tiling, “node fusion”)
- **Code generation**: from ONNX graph to C/C++ code
- **Compilation**: from C/C++ code to machine code
QuantLab: structure overview
QuantLab: the systems package
The **systems** package

```
<table>
<thead>
<tr>
<th>systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CIFAR10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>vgg.py</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>config.json</td>
</tr>
</tbody>
</table>
```
The `systems` package
The **systems** package: problem sub-package

```bash
$ bash configure/problem.sh CIFAR10
```
The **systems** package: adding problems
The **systems** package: topology sub-package

```
$ bash configure/problem.sh CIFAR10 VGG
```
The **systems** package: adding topologies
QuantLab: the **manager** package
The manager package

- **platform**: management of HW/OS aspects (e.g., GPU aspects, distributed processing)
- **flows**: the services that can be accessed from the façade
- **logbook**: the abstraction that mediates the interactions between the QuantLab flows and the disk
- **assistants**: the abstractions that assemble the components of the deep learning systems inside QuantLab flows
- **meter**: the abstractions to track statistics on parameters and features of the deep neural network being trained or tested
QuantLab flows
QuantLab *flows*: configuring an experiment

```
$ python main.py –problem=CIFAR10 –topology=VGG configure
```
QuantLab flows: configuring an experiment

$ python main.py -problem=CIFAR10 -topology=VGG configure
QuantLab *flows*: configuring an experiment

```bash
$ python main.py --problem=CIFAR10 --topology=VGG configure
```
QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configure

Logbook
QuantLab flows: configuring an experiment

$ python main.py --problem=CIFAR10 --topology=VGG configure
QuantLab *flows*: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configure
QuantLab *flows*: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configure
QuantLab *flows*: configuring an experiment

```bash
$ python main.py --problem=CIFAR10 --topology=VGG configure
```
QuantLab *flows*: configuring an experiment

```
$ python main.py --problem=CIFAR10 --topology=VGG configure
```
QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
QuantLab *flows*: training a DNN

$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
QuantLab *flows*: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
QuantLab flows: training a DNN

$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
QuantLab *flows*: training a DNN

```
$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
```
QuantLab *flows*: training a DNN

```
$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
```

![Diagram showing the QuantLab flows structure]
QuantLab *flows*: training a DNN

```
$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
```
QuantLab *flows*: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
QuantLab *flows*: training a DNN

$\text{python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0}$
QuantLab flows: training a DNN
QuantLab *flows*: training a DNN

```bash
$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
```
QuantLab *flows*: training a DNN

```
$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
```
QuantLab *flows*: training a DNN

```
$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
```

![Diagram](image)
QuantLab \textit{flows}: training a DNN

```bash
$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0
```
QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
QuantLab flows: training a DNN

Python command: $ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0
QuantLab *flows*: training a DNN

$ python main.py --problem=CIFAR10 --topology=VGG train --exp_id=0

![Diagram of QuantLab flows: training a DNN](image)
QuantLab \textit{flows}: training a DNN

\$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0 \$
QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)
• Create a topology sub-package
• Write the working files:
 • Data pre-processing and loading
 • Network definition
 • Output post-processing
• Write the configuration file that describes how to instantiate the system
• Run the configure flow
• Run the training flow

ITERATE UNTIL YOU ARE SATISFIED!
QNNs: a HW/SW co-design problem

Platform-agnostic
- **Data analysis**: how can we model the data problem?
- **DNN design**: which network topology can work best?
- **Training**: backpropagation + SGD

Platform-aware
- **float2fake** conversion
- **Post-training quantization** algorithm (w/o fine-tuning)
- **fake2true** conversion

Platform-specific
- **Graph optimisation**: ONNX graph (e.g., tiling, “node fusion”)
- **Code generation**: from ONNX graph to C/C++ code
- **Compilation**: from C/C++ code to machine code
QNNs: a HW/SW co-design problem

<table>
<thead>
<tr>
<th>Data analysis</th>
<th>DNN design</th>
<th>Training (FP)</th>
<th>float2fake</th>
<th>Post-training quantization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training (FP)</td>
<td>float2fake</td>
<td>Post-training quantization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNN design</td>
<td>Training (FP)</td>
<td>Graph optimisation</td>
<td>Code generation</td>
<td>Compilation</td>
</tr>
<tr>
<td>DNN design</td>
<td>Training (FP)</td>
<td>Graph optimisation</td>
<td>Code generation</td>
<td>Compilation</td>
</tr>
</tbody>
</table>

Platform-agnostic

- **Data analysis**: how can we model the data problem?
- **DNN design**: which network topology can work best?
- **Training**: backpropagation + SGD

Platform-aware

- **float2fake** conversion
- **Post-training quantization** algorithm (w/ fine-tuning)
- **fake2true** conversion

Platform-specific

- **Graph optimisation**: ONNX graph (e.g., tiling, “node fusion”)
- **Code generation**: from ONNX graph to C/C++ code
- **Compilation**: from C/C++ code to machine code
QNNs: a HW/SW co-design problem

Platform-agnostic
- **Data analysis**: how can we model the data problem?
- **DNN design**: which network topology can work best?
- **Training**: backpropagation + SGD

Platform-aware
- **float2fake** conversion
- **Quantization-aware training** algorithm
- **fake2true** conversion

Platform-specific
- **Graph optimisation**: ONNX graph (e.g., tiling, “node fusion”)
- **Code generation**: from ONNX graph to C/C++ code
- **Compilation**: from C/C++ code to machine code
QNNs: a HW/SW co-design problem

Platform-agnostic
- Data analysis: how can we model the data problem?
- DNN design: which network topology can work best?
- Training: backpropagation + SGD

Platform-aware
- float2fake conversion
- Quantization-aware training algorithm
- fake2true conversion

Platform-specific
- Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)
- Code generation: from ONNX graph to C/C++ code
- Compilation: from C/C++ code to machine code

TODAY WE WILL NOT DEAL WITH THESE STEPS
QNNs: a HW/SW co-design problem

Platform-agnostic
- **Data analysis**: how can we model the data problem?
- **DNN design**: which network topology can work best?
- **Training**: backpropagation + SGD

Platform-aware
- **float2fake** conversion
- **Quantization-aware training** algorithm
- **fake2true** conversion

Platform-specific
- **Graph optimisation**: ONNX graph (e.g., tiling, “node fusion”)
- **Code generation**: from ONNX graph to C/C++ code
- **Compilation**: from C/C++ code to machine code

TODAY WE WILL FOCUS ON THESE STEPS
QuantLab: the `quantlib` package
QuantLab: the quantlib package
The *quantlib* package: overview
The **quantlib** package: overview

- Data analysis
- DNN design
- **float2fake**
- Quantization-aware training
- **fake2true**
- Graph optimisation
- Code generation
- Compilation
The `quantlib` package: overview

- Data analysis
- DNN design
- Quantization-aware training
- Graph optimisation
- Code generation
- Compilation
- `float2fake`
- `fake2true`
The **quantlib** package: overview

- **Data analysis**
- **DNN design**
- **float2fake**
 - Quantization-aware training
- **fake2true**
- **Graph optimisation**
- **Code generation**
- **Compilation**
The quantlib package: overview
The **quantlib** package: overview

TODAY’S EXERCISES WILL FOCUS ON THESE TOOLS
The **quantlib** package: overview
Extending topology sub-packages
Extending topology sub-packages

- systems
 - utils
 - CIFAR10
 - ILSVRC12
 - ...
 - data
 - VGG
 - ...
 - logs
 - preprocess
 - vgg.py
 - postprocess
 - quantize
 - config. json
QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)
• Create a topology sub-package
• Write the working files:
 • Data pre-processing and loading
 • Network definition
 • Output post-processing

• Write the configuration file that describes how to instantiate the system
• Run the configure flow
• Run the training flow

ITERATE UNTIL YOU ARE SATISFIED!
QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)
• Create a topology sub-package
• Write the working files:
 • Data pre-processing and loading
 • Network definition
 • Output post-processing
 • Quantization recipes and network controllers creators (quantize namespace)
• Write the configuration file that describes how to instantiate the system
• Run the configure flow
• Run the training flow
• Perform fake2true conversion
• Generate code for your platform (warning: this is has not been automated yet!)

ITERATE UNTIL YOU ARE SATISFIED!
QuantLab: present and future
QuantLab: present and future

Existing features:

• Configuration-based training flows
• Multi-GPU and multi-process support
• Integration with TensorBoard
• \textit{float2fake} conversion
• Quantization-aware training algorithms (STE, INQ, RPR, ANA, PACT, SAWB)
• \textit{fake2true} conversion
QuantLab: present and future

Existing features:
- Configuration-based training flows
- Multi-GPU and multi-process support
- Integration with TensorBoard
- `float2fake` conversion
- Quantization-aware training algorithms (STE, INQ, RPR, ANA, PACT, SAWB)
- `fake2true` conversion

Planned features:
- Data and network initialisation seeding
- PyTorch code generation for true-quantized networks
- Post-training quantization
- More quantization-aware training algorithms
- Mixed-precision support
QuantLab Virtual Workshop

Part 3: graph editing
Graph editing in **quantlib**

By *graph editing* we refer to a collection of techniques to modify graphs:

- Tree traversal and leaf replacement
 - *float2fake* conversions

- Graph morphisms and algebraic graph rewriting
 - *fake2true* conversions
Tree traversal and leaf replacement

- **Tree**: a directed graph G whose associated undirected version is connected and acyclic

- **Rooted tree**: a tree where a node has been designated to be the *root*; nodes with no incoming edges are called *leaves* (we assume that the natural orientation of arcs is towards the root)

- **Tree traversal**: the process by which, starting from the root of a rooted tree, all leaves are identified

- **Leaf replacement**: the process by which a leaf is replaced by another leaf, or by a rooted tree whose root takes the place of the leaf
Tree traversal and leaf replacement
Graph terminology - advanced

• **Source** and **target** of an arc:
 • \(s_G : E \rightarrow V, \ s_G((u, v)) := u \)
 • \(e_G : E \rightarrow V, \ e_G((u, v)) := v \)

• Let \(\Lambda \neq \emptyset \) denote a set of **labels**
• Let \(* \in \Lambda \) denote an **undefined** label

• **Attributed graphs**
 • Node labelling \(l_G : V \rightarrow \Lambda \)
 • Arc labelling \(m_G : E \rightarrow \Lambda \)
Functions between graphs

• Let \(L = (V_L, E_L) \), \(H = (V_H, E_H) \) be graphs

• Since a graph is a pair of sets, a function between graphs \(L, H \) is a pair \(g = (g_V, g_E) \) of functions
 • \(g_V : V_L \to V_H \)
 • \(g_E : E_L \to E_H \)
Preserving the information flow: morphisms

• Preserve the *structural* flow:
 1. \(s_H(g_E(e)) = g_V(s_L(e)), \forall e \in E_L \)
 2. \(t_H(g_E(e)) = g_V(t_L(e)), \forall e \in E_L \)

• Preserve the *semantic* flow:
 3. \(l_H(g_V(v)) = l_L(v), \forall v \in V_L \)
 4. \(m_H(g_E(e)) = m_L(e), \forall e \in E_L \)

• A function between graphs \(L, H \) that satisfies 1., 2., 3., 4. is called a **morphism**

• Can you think of a function between graphs which is not a morphism?
Algebraic graph rewriting

- **Graph rewriting rule:**
 - Context graph
 - Template graph and template core
 - Replacement graph and replacement core

- **Derivation:** recursive definition: application or sequence of derivations

- **Application point:** a morphism; in practice we use type-checked isomorphisms
Algebraic graph rewriting

• **Graph rewriting rule:**
 • Context graph
 • Template graph and template core
 • Replacement graph and replacement core

• **Derivation:** recursive definition: application or sequence of derivations

• **Application point:** a morphism; in practice we use type-checked isomorphisms
Algebraic graph rewriting

- **Graph rewriting rule:**
 - **Context graph**
 - **Template graph and template core**
 - **Replacement graph and replacement core**

- **Derivation**: recursive definition: application or sequence of derivations

- **Application point**: a morphism; in practice we use type-checked isomorphisms
Algebraic graph rewriting

• **Graph rewriting rule:**
 • Context graph
 • Template graph and template core
 • Replacement graph and replacement core

• **Derivation:** recursive definition: application or sequence of derivations

• **Application point:** a morphism; in practice we use type-checked isomorphisms
Algebraic graph rewriting

- **Graph rewriting rule:**
 - Context graph
 - Template graph and *template core*
 - Replacement graph and *replacement core*

- **Derivation**: recursive definition: application or sequence of derivations

- **Application point**: a morphism; in practice we use type-checked isomorphisms
Algebraic graph rewriting

• **Graph rewriting rule:**
 • Context graph
 • Template graph and template core
 • Replacement graph and replacement core

• **Derivation**: recursive definition: application or sequence of derivations

• **Application point**: a morphism; in practice we use type-checked isomorphisms
Algebraic graph rewriting

• **Graph rewriting rule:**
 • Context graph
 • Template graph and template core
 • Replacement graph and replacement core

• **Derivation:** recursive definition: application or sequence of derivations

• **Application point:** a morphism; in practice we use type-checked isomorphisms
Elevating a JIT graph to a PyTorch graph
Elevating a JIT graph to a PyTorch graph

Light blue nodes are identified

Working memory node
Elevating a JIT graph to a PyTorch graph

This graph is not acyclic!

Light blue nodes are identified

Working memory node
Elevating a JIT graph to a PyTorch graph

Light blue nodes are identified

Working memory node

Prune working memory nodes

This graph is not acyclic!
Projecting a computational graph
Projecting a computational graph

To memory partition

To kernel partition

We can work on simpler graphs!
Some last notes

• QuantLab and quantlib are released under the Apache 2.0 License
• This is a beta release: your feedback is our goal!
• Address communications to spmatteo@iis.ee.ethz.ch
Some last notes

• QuantLab and quantlib are released under the Apache 2.0 License
• This is a beta release: your feedback is our goal!
• Address communications to spmatteo@iis.ee.ethz.ch

Special thanks...
 ... for assisting with the development and proofreading the notebooks:
 Georg Rutishauser, Moritz Scherer
 ... for helping with the licensing and publication process:
 Manuel Eggimann, Frank Kagan Gürkaynak
We hope to see you at the next edition!