

GRAN

ALMA MATER STUDIORUM JNIVERSITÀ DI BOLOGNA

@pulp platform

youtube.com/pulp_platform

pulp-platform.org

F-3: Design and Experimental Investigation of Trikarenos: A Fault-Tolerant 28nm RISC-V-based SoC

RADECS 2024 – Radiation Hardening Techniques

Michael Rogenmoser ¹ michaero@iis.ee.ethz.ch

Philip Wiese ¹, Bruno Endres Forlin ², Frank K. Gürkaynak ¹, Paolo Rech ³, Alessandra Menicucci ⁴, Marco Ottavi ^{2,5}, Luca Benini ^{1,6}

¹ ETH Zurich (Switzerland), ² University of Twente (Netherlands), ³ University of Trento (Italy), ⁴ TU Delft (Netherlands), ⁵ University of Rome, Tor Vergata (Italy), ⁶ University of Bologna (Italy)

PULP Platform

Open Source Hardware, the way it should be!

RISC-V up and coming

- RISC-V is gaining traction in Space & Automotive domains
- Reliability is required
 - RISC-V is ideally suited -> open ISA
- Initial Designs are becoming available
 - Commercial: NASA HPSC, NOEL-V
 - Academic projects: Trikarenos
- Radiation evaluation needed
 - Processor susceptibility

ETH zürich

• Strength of protection mechanisms

RISC-

Contributions

- Reliability investigation of Trikarenos SoC design
 - Lockstepped RISC-V cores
 - ECC-protected memory
- Evaluation under Neutron and Proton radiation
 - Neutron beam experiments at ChipIR
 - Proton beam experiments at *HollandPTC*
- Analysis of SRAM error rates
 - Effectiveness of ECC mechanism & scrubbing
- Analysis of processor core error rates
 - Effectiveness of Lockstep mechanism

Trikarenos Design

- PULPissimo-based SoC Design
 - Modified for reliability
- Three lockstepped cores with voting
- ECC-protected memory
- Peripherals
 - UART
 - QSPI
 - GPIO

- JTAG for programming and internal access
- Low-latency interconnect

RADECS2024 F-3: Radiation Hardening Techniques - Design and Experimental Investigation of Trikarenos

Core Lockstep Mechanism

- Identical inputs
 - Ensures identical operations
- Voting on outputs
 - Determine correct signal values
- Internal state requires re-synchronization
 - Saved to memory, state reset, loaded from memory
- Switchable

ETH zürich

• Can be disabled for parallel performance

ECC memory

- Hsiao code for efficient encoding
 - Single Error Correction, Double Error Detection
- 32bit word stored as 39bit with parity
- Read-modify-write for efficient byte-wise access
- Scrubber for continuous correction
 - Avoids latent errors causing uncorrectable error

Trikarenos implementation

- Implemented in TSMC 28nm
 - TID tolerance previously investigated
- Standard cells
 - No hardened cells
- Standard flows
 - No additional protections (clock/reset tree)
- Physical separation for cores
 - Ensures single particle does not cause SEU in multiple cores
- 250MHz target, operating at 125MHz
 - 0.9V core, 1.8V I/O

Experimental Setup

- **Trikarenos standalone on PCB**
- **Raspberry Pi**
 - For programming and monitoring
 - Stores data
 - Ethernet to transmit outside & control
- **Application on Trikarenos**
 - Coremark
 - Register operations to accumulate errors and detect TCLS correction
 - GPIOs

ETH zürich

- Heartbeat
- Exception signalling •

Collimator

Beam

RADECS2024 F-3: Radiation Hardening Techniques - Design and Experimental Investigation of Trikarenos

Experimental Results – Neutrons @ ChipIR

- Neutrons
 - Atmospheric energy distribution
 - Flux: 5 × 10⁶ n cm⁻² s⁻¹
 - Total Fluence: $6.88 \times 10^{11} \text{ n cm}^{-2}$
- SRAM errors
 - 18'786 errors
 - Cross-section: (2.75 ± 0.02) × 10⁻⁸ cm
 - 256KiB usable: 2'555'904 bits: (1.08 ± 0.01) × 10⁻¹⁴ cm² bit⁻¹
- Lockstep:

- 13 errors: (2.55 ± 0.68) × 10⁻¹¹ cm²
- 0 system errors: < 5.36 × 10^{-12} cm²

Experimental Results – Protons @ HollandPTC

- Protons
 - 200 MeV
 - Flux: Up to $1.13 \times 10^9 \text{ p cm}^{-2} \text{ s}^{-1}$
 - Total Fluence: 2.91 × 10^{12} p cm⁻²
- SRAM errors
 - 8'249 errors
 - Cross-section: (2.86 ± 0.03) × 10⁻⁹ cm
 - 256KiB usable: 2'555'904 bits: (1.12 ± 0.01) × 10⁻¹⁵ cm² bit⁻¹
- Lockstep:

- 11 errors: (5.25 ± 1.51) × 10⁻¹² cm²
- 1 system errors: < 1.91 × 10^{-12} cm²

- 1.77 × 10³ Gy during experiments
 - No degradation observed

Memory Error Analysis

• (1.08 ± 0.01) × 10⁻¹⁴ cm² bit⁻¹ for neutrons

• (1.12 ± 0.01) × 10⁻¹⁵ cm² bit⁻¹ for protons

- *9x* higher for neutrons vs. protons
 - Large difference could relate to energies, particle types, ...

- Scrub rate can be tuned
 - One scrubber per bank, 8 banks, each 8192 words
 - 1 scrub every 6225 cycles catches all errors

higher for neutrons vs. protons

C X

12

Conclusion

- Trikarenos' protected RISC-V SoC architecture
 - Lockstep cores for correct processing
 - ECC Memory for data consistency
- Experimental Investigation with atmospheric neutrons and 200 MeV protons
 - SRAM neutron vulnerability: $(1.08 \pm 0.01) \times 10^{-14} \text{ cm}^2 \text{ bit}^{-1}$
 - SRAM proton vulnerability: (1.12 ± 0.01) × 10⁻¹⁵ cm² bit⁻¹
 - Lockstep: improves reliability by >3.5 × from (2.55 ± 0.68) × 10⁻¹¹ cm² to below 5.36 × 10⁻¹² cm²
- Extended with simulation-based fault injection for TNS special issue
- Targeting space mission in early 2025

PULP Platform Open Source Hardware, the way it should be!

Michael Rogenmoser michae Philip Wiese Bruno Endres Forlin Frank K. Gürkaynak Paolo Rech Alessandra Menicucci Marco Ottavi Luca Benini

Institut für Integrierte Systeme – ETH Zürich Gloriastrasse 35 Zürich, Switzerland

DEI – Università di Bologna Viale del Risorgimento 2 Bologna, Italy

ETHzürich

michaero@iis.ee.ethz.ch

@pulp_platform

youtube.com/pulp_platform