10 years of making PULP chips

Frank K. Gürkaynak^{1,2}, Luca Benini^{2,3}

¹Microelectronics Design Center, ETH Zürich ²Integrated Systems Laboratory, ETH Zürich ³Department of Electrical, Electronic, and Information Engineering, University of Bologna

Abstract

The Parallel Ultra Low Power (PULP) platform started in April 2013 as a joint effort between ETH Zürich and University of. In the past decade, this project has enjoyed tremendous success and has played a part in the recent emergence of open source hardware as a viable option. For research and commercial development of advanced computing systems more than 50 ASICs were designed and tested related to the PULP Platform. This contribution presents these ASICs and gives an overview of targeted technology nodes and application domains.

Introduction

Open source hardware has made great strides in the past few years. As a member of PULP platform team, I have been very lucky to have taken part in the journey that has resulted in more than 50 ASICs as part of this project. The result of these ASICs have contributed directly to the open source repositories under <u>https://github.com/pulp-platform</u>, and many of the contributions have found new homes with nonfor-profit companies and consortia, such as the OpenHW group (RI5CY and Ariane) or LowRISC (Zeroriscy). All these ASICs have been part of the IIS Chip Gallery [1] and with this contribution I would like to present a summary of all the ASICs to commemorate our efforts in open source hardware.

List of PULP related ASICs

The following Table 1 lists the ASICs that were taped-out (or were in planning) at the time of writing.

Table 1: PULP related ASICs					
Year 2013	Name	Technology	Domain		
1	Pulp	ST28	IoT processing		
2	Sir10us	UMC180	IoT control		
3	Or10n	UMC180	IoT control		
2014					
4	Artemis	UMC180	IoT processing		
5	Diana	UMC180	IoT processing		
6	Hecate	UMC180	IoT processing		
7	Selene	UMC180	IoT processing		
8	Pulpv2	STM28	IoT processing		
2015	_				
9	Diego	ALP180	IoT control		
10	Manny	ALP180	IoT control		
11	Sid	ALP180	IoT control		
12	Fulmine	UMC65	TinyML, security		

		TR COCC	
13	Mia Wallace	UMC65	IoT processing
14	Pulpv3	ST28	IoT processing
15	VivoSoC	SMIC130	Biomedical
16	Honey Bunny	GF28	IoT processing
17	Imperio	UMC65	IoT control
18	Phoebe	UMC65	IoT control
2016			
19	VivoSoC2	SMIC130	Biomedical
20	VivoSoC2.1	SMIC130	Biomedical
21	Patronus	UMC65	Security
2017			
22	Mr. Wolf	TSMC40	IoT / Biomedical
23	GAP8	TSMC55	IoT, Industrial
2018			,
24	Arnold	GF22	Industrial
25	Poseidon	GF22	Processor core
26	Kosmodrom	GF22	Processor core
27	Atomario	UMC65	Processor core
28	Scarabeaus	UMC65	IoT control
29	VivoSoC3	SMIC130	Biomedical
2019			
30	Baikonur	GF22	HPC, Industrial
31	Billywig	UMC65	Processor core
32	Plink	UMC65	IoT, Industrial
33	Urania	UMC65	Accelerators
34	Xavier	UMC65	Accelerators
35	Rosetta	TSMC65	TinyML
36	VivoSoC3.1	SMIC130	Biomedical
2020			
37	Dustin	TSMC65	IoT, TinyML
38	Vega	GF22	Industrial
39	Thestral	GF22	Low power
2021			1
40	Darkside	TSMC65	IoT, TinyML
41	Dogeram	TSMC65	Industrial, control
42	Echoes	TSMC65	IoT, TinyML
43	Marsellus	GF22	IoT, TinyML
44	Minpool	TSMC65	HPC
45	Yun	TSMC65	HPC
46	Zest	TSMC65	Industrial, control
47	Kraken	GF22	IoT, TinyML
			, ,

2022			
48	Cerberus	TSMC65	Safety
49	Eclipse	TSMC65	Processor Core
50	Kairos	TSMC65	Power control
51	Neo	TSMC65	Processor core
52	Trikarenos	TSMC28	Safety
53	Shaheen	GF22	IoT, Industrial
54	Occamy	GF12	HPC
55	Siracusa	TSMC16	AR/VR
2023			
56	Carfield	Intel16	Automotive
57	Iguana	IHP130	Open MPW
58	tbd	TSMC65	tbd
59	tbd	TSMC65	tbd
60	tbd	TSMC65	tbd

Despite the large number of ASICs designing, taping out and testing an ASIC still requires a considerable effort even with the advent of modern design tools and techniques. Practically all of these ASICs were designed from publicly available permissively licensed open source RTL code at the PULP platform GitHub page and mapped onto the technology using a digital design flow. Only technology dependent data (i.e. memories, pads, clock generators, interface IP) were not made available due to non-disclosure agreements, and we hope that in the next decade, open source process design kits and open source design tools will help us have complete, end-to-end PULPdesigns open sourced.

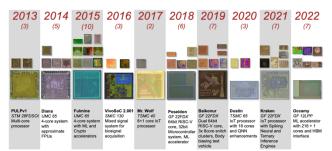


Figure 1 PULP chips by years

Acknowledgements

Needless to say, the entire PULP team at ETH Zürich and University of Bologna including all former members are the main contributors to this body of work. However, this work would not have been possible without the support of:

- Europratice for providing IC Design tools and IC manufacturing service
- Generous donations from Synopsys on advanced design tools
- Support from Globalfoundries, ST Microelectronics, EM-Marin for silicon manufacturing and sponsored runs.
- Donated IP from Dolphin, Rambus, Quicklogic for various projects
- Companies and groups that have supported us in various forms: Google, Meta, Samsung, Siemens,

Huawei, NXP, Intel, LowRISC, Greenwaves, Thales, Cadence, OpenHW group, RISC-V international, FOSSi

- EU funded projects that supported this work that include: Oprecomp, Exanode, European Processor Initiative, Fractal, Mnemosene, Ampere, Convolve, Corenext, Eurolab4HPC, Hercules, P-Socrates, Antarex, Aloha, Tristan, Isolde, dAIEdge, NeuroSoC, EuPilot
- Projects that were funded through Swiss National Science Foundation: Microlearn, IcySoC, Transient Computing,
- Our research collaborators, too many to mention within the confines of this paper
- Everyone that has used our open source hardware offerings

We thank you all and hope to present an even more impressive list for the next 10 years.

Short Bios:

Frank K. Gürkaynak, has earned his Ph.D. Degree from ETH Zürich and has been heading the Microelectronics Design Center, of ETH Zürich that supports IC, FPGA and PCB design flows for the university as well as serving as a Senior Scientist in the Digital Circuits and Systems Group. He has worked as part of the PULP platform project since its inception in 2013.

Luca Benini is the chair of Digital Circuits and Systems with ETH Zurich and a full € professor with the University of Bologna. He has served as chief architect for the Platform 2012 in STMicroelectronics, Grenoble. His research interests include energy-efficient systems and multicore SoC design. He is also active in the area of energy-efficient smart sensors and sensor networks. He is a fellow of the ACM, IEEE and a member of the Academia Europaea.

References

[1] <u>http://asic.ethz.ch/</u>, Chip gallery of Integrated Systems Laboratory, accessed online on 19.M arch.2023

[2] <u>https://pulp-platform.org</u>, PULP platform WWW page, accessed online on 19. March 2023

[3] <u>https://github.com/pulp-platform</u>, GitHub repositories of PULP platform, 19. March 2023