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Abstract

Microarchitectural timing channels enable information transfer between security domains that are supposed to be
isolated, bypassing the operating system’s security boundaries. They result from shared microarchitectural state
that depends on execution in one security domain and impacts timing in another. Since modern ISAs do not
specify timing behaviour, they are insufficient to address these channels. The temporal fence instruction was
recently proposed as a RISC-V extension that clears the processor’s microarchitectural state and thus removes
any timing dependence on execution history. It has been demonstrated to be extremely effective at low hardware
overhead for in-order RV processors, such as CVA6 [1]. In this work-in-progress, we provide initial insight
into the effectiveness and cost of the temporal fence on the open-source, 12-stage, out-of-order RV64GC core
OpenC910. We highlight challenges that arise from the out-of-order microarchitecture of OpenC910 and propose
an approach that leverages the custom Xthead extension of OpenC910 and minimises the required hardware
modifications to enable time protection.

Introduction

Security schemes for application-class processors
largely rely on memory protection, restricting the
memory view of applications using abstractions such
as address space virtualisation. However, as Ge et
al. [2] argue, and the Spectre attacks have prominently
demonstrated [3], this abstraction is insufficient for a
principled isolation of applications. There exist timing
dependencies between concurrently running applica-
tions through shared microarchitectural state, where
one application’s execution may impact another appli-
cation’s execution time. This timing dependency can
be leveraged to bypass the system’s security bound-
aries and covertly transfer information. We refer to
such a communication channel as a timing channel.
In [4], the authors complement the existing notion

of memory protection with time protection, a concept
assumed at preventing timing channels. As they show,
current instruction set architectures (ISAs) do not
provide the means to enforce time protection. Hence,
they propose to extend the existing ISA abstractions
by adding control over shared microarchitectural state.
To address this need, Wistoff et al. [1] propose the

temporal fence instruction (fence.t), which clears
shared microarchitectural components that may con-
stitute a timing channel. Furthermore, they propose a
systematic approach for implementing fence.t by con-
servatively clearing all non-architectural state. They
demonstrate this approach on CVA6, an in-order, 6-
stage RV64GC core [5].
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In this work-in-progress, we prototype the fence.t
instruction in OpenC910, an out-of-order (OoO)
RISC-V core [6]. As we show, this core’s high com-
plexity and OoO architecture introduce new challenges
that need to be addressed. We propose an approach
that combines existing instructions in OpenC910 with
an aggressive reset of microarchitectural state to enable
time protection with minimal hardware modifications.

fence.t in Large OoO Cores

OpenC910

OpenC910 is an industrial, 64-bit, application-class,
12-stage, OoO RISC-V core by T-Head Semiconductor
Co., Ltd., implementing the RV64GCXtheadc ISA. It
was open-sourced in 2021 under the Apache License
and features the custom Xtheadc extension [6].
In the following, we will introduce those elements

of the extension that we leverage in this work.

sync.i Instruction The Instruction Stream Synchro-
nisation (sync.i) instruction serves as a barrier in the
instruction stream. It ensures that the instructions
preceding it retire before those that follow it.

dcache.call Instruction The Data Cache Clear All
(dcache.call) instruction clears the L1 data cache,
writing back all dirty cache lines.

mrvbr CSR The Machine Mode Reset Vector Base
Address Register (mrvbr) holds the address from which
the core starts execution after coming out of reset.
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The Problem of Mixed State

OoO execution can introduce new challenges for tem-
poral partitioning of shared microarchitectural state.
On a simple in-order core, it is trivial to differentiate
between architectural components that must be pre-
served on a temporal fence (the register files) and the
non-architectural state that needs to be cleared (ev-
erything else). However, advanced microarchitectural
optimisations, such as register renaming, obscure the
boundary between architectural and non-architectural
state. While the logical registers define the proces-
sor’s architectural state, their allocation to physical
registers constitutes non-architectural state with pos-
sible timing implications, harbouring the potential
for timing channels. This raises the question of how
to preserve the logical registers while bringing the
re-namer and physical register file to a deterministic,
history-independent state.
In the following, we propose an approach that is

minimally intrusive to the hardware: software saves
the architectural registers on the stack before fence.t
conservatively resets the entire register file. Imme-
diately afterwards, software restores the registers by
loading them from the stack, resulting in a determin-
istic physical register layout.

Hardware Modifications

The key hardware modification is the addition of the
fence.t instruction, which, on this system, triggers
a reset of the entire core except for the control and
status registers (CSRs).

Invocation of fence.t

We aim to minimise the required hardware modifica-
tions for fence.t and reuse existing instructions as
much as possible. As a result, a sequence of steps
before and after fence.t is necessary to preserve com-
putational and architectural correctness.

Step 1: Save context. Save the stack pointer (sp)
at a known location that is not affected by fence.t,
e.g. the mscratch CSR. Write the architectural regis-
ters onto the stack.

Step 2: Define reset vector. Write the address
of the instruction following fence.t into the mrvbr
CSR. Execution after fence.t will resume from here.

Step 3: Clear L1 data cache. Execute
dcache.call to write back dirty cache lines.

Step 4: Execute fence.t. This resets the entire
core except for the CSR files. We guard the fence.t
instruction by sync.i instructions to ensure that all
previous steps have been completed.
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Figure 1: The L1 data cache channel on OpenC910.

Step 5: Restore context. Restore the stack pointer
and load the architectural registers from the stack.

Preliminary Results

For initial validation of the proposed mechanism, we
port the bare-metal timesec-bench [7] to OpenC910
and run it in RTL simulation. The resulting channel
matrix in Figure 1 shows the time for the spy to access
different cache lines given a particular value signalled
by the Trojan, where any variation along a horizontal
cut indicates a channel. Such a channel is clearly
present in the unmitigated case, as the diagonal line in
Figure 1a evinces. Conversely, invoking fence.t when
switching between the Trojan and the spy removes all
correlations, as shown in Figure 1b.
In future work, we will evaluate this approach’s

security and performance implications in the context
of an operating system.
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